
!•'•*>

10.7.1990
INAGE PROUDLY PRESENTS ANOTHER STUNNING RELEASE;

AAAA
AAAAAA

AAAAAAAA
AAAA AAAA

AAAA

Minn nnnn oooooooo ssssss
nnnnnn nnnnnn oooo oooo ssss ssss
MliMIIMMMMMMMIIMMil OOOO OOOO SSSS SSS
nnnn nnnnri nnnn oooo oooo sssssss

nnnn nnnn oooooooo

T H E G R E A T 0 R

sssssssss

T h a n x t o M r.. S p a g h e 11 o / A c c e s s i o n f o r t h e t y pin' w o r k!

!(Usinq CyqnusEd Professional Release 11)

Without the great help of

S t r a n g e r /1 m a q e

you woudn ' t ; h a v e th:i.s Fi 1 e/Print. in your hands. He de 1 ivered me
the original! manual, and promised to spread the Final Version of

this file all around the world.

- Try the NO -1 BBS in Finland, give a call to IMAGE HQ -
— Pirates Cove at: +358-0-802 4389 (HST DS, 121MB, 24H) —

How was it all jdone? •

AMOS Basic was designed and progrqammed by Francois Lionet„ His clever
ideas and inspirational work have produced what we feel to be by far
the best high-level programming language available on the amiga to
date. • !

AMOS was developed using the following programs;

DEVPAC ;II Assembler - HiSoft * '
\ '• Deluxe paint III - Electronic Arts

Pix Mate - Progressive Peripherals 8: Software
Cross-Dos - Consultron

, '•' - Mini Office Professional Communications - Database Software

Mandarin Software would like to thank the following people for their
kind help during the development of AMOSs

A3.listair Brirnble, Aaron and Adam Fothergill of Shadow Software,, Peter
Hickman, Rico Holmes, Commodre UK for the international keyboard
1 ayou ts (an the Amig a)., Commodore Fran ce f ar t he he 1 p w i t h t he A1000
problem,, 17-Bit Software for samples and demos, Martyn Brown for fonts
and support., Virus Free? F'D for Sound tracker, Simon Cook for his

c o n s t r u c t i v e c o m m e n t s and b u g f i n d :i. n g , Lee, Alex, a 11 o t h e r AII0 S
developers for their kind, help and all of you who have waited patienly

for this software. We hope, like us, you feel it was well worth the

wait.

This manual (the original ,, not this ASCII file) was written using

WriteNow on the Apple Macintosh and paged up with Page Maker.

Copyright Notice

Amos will enable you to create some very impressive software. It is
vary important that you acknowledge AMOS in your programs using a
phrase such as "Written by John Smith using AMOS", and., where possible,
include the AMOS Sprite. ;

If your program is released commercially, the words
" AMOS c 1990 Mandarin/Jawx " must be included on the back of the
packaging and in the printer instructions.

CONTENTS

1: INTRODUCTION
Dedication ...
Foreword

2s GETTING STARTED
Backup AMOS now 3
Installing AMOS on a single floppy system 3
Installing AMOS on a double floppy system 4
Installing AMOS onto a hard disc .„„„„.. 4
Loading AMOS Basic 4
AMOS tutorial 5

Loading a program 5
Deleting a program 6
Direct mode 6
Animation ! 7
Listing the sprite files 7
Loading a sprite file .. 7
Setting the sprite colours 8
Displaying a sprite . *. „ 8
Animating a sprite 8
Moving a sprite 8
Musi c maestro ! .».«., 9

The journey continues 9
Hints and tips 9

3s THE EDITOR
The menu window 11
The information line „ „ „ „ .. 11
The editor window 12
An introduction to direct mode».„,,„....„«. .1.3
Loading a program 14
The AMOS file selector ...,....„ „ „ „ „ „ 14
Saving a Basic proqram 15
Scro11ing thourgh your files 15
Changing the current drive , ., „ 15
Changing the directory „ ,. „ „ „ , „ „ „ 15
Setting the search path 15

Using the fiIs selector 16
Editor tutorial 16

Scrolling through a listing « 16
Label/Procedure searches 1?
Folding a procedure definition 18
Search/Replace 18
Finding an item 18
Replace 18
Cut and Paste •• 19
Multiple programs and accessories 19
Multiple programs 19
Accessories 20

Direct Mode 21
Direct mode editor keys ...» 21

The menu window 22
Default menu. 22
The system menu 24
The blocks menu ,..»,.„.«.......,....».......».... 25
The search menu 26

Keyboard macros 28
Conserving memory 30
Inside accessories 30
The HELP accessory 32
The editor con trol keys,., 32
Special keys 33
Editing keys 33
The cursor arrows 33
Prog ram con trol 33
Cut and Paste 34
Harks ...I.....,,,,.,.,...,,,..............,................. „«,...... 34
Search/Replace 34
Tabs . , 34

: BASIC PRINCIPLES
Variables 35
Types of variables ,.„.,.. ,, „. „ „ „ 35

In teqers ,.,„„„„„,,,,.„.,„ 35
Real numbers 36
String variables 36

Giving a variable a value 36
A r rays 36
Constants 37
Arithmetic operations . „ „ „ „ 38
String operations , „ . . 40
Parameters . .. 41
Line numbers and labels 41

Labels 41
Procedures .. 42

Local and global variables 43
Parameters and procedures „. 44
Shared variables „. 45
Returning values from a procedure 46
Leaving a procedure . . 4"/
Local DATA statemen ts „ . „ „» .. 47
Hints and tips 47

Memory Banks 48
Types of memory bank , „ „ „. 48
Deleting ban ks . „. 50
Bank parameter functions 50
Loading and saving banks ... 51

Memory- fragmen tation » ,. . „ „ „ „ „ „ 52

Finding space for your variables ..,„„„„ 53

5s SIRING FUNCTIONS
Array operations • b9

6s GRAPHICS
Colour - 61
Line drawing commands — - . • »»» 63

Line types .. 67
Fi1led shapes 6/

Fi 11 types 68
Writing styles /0
Advanced techniqu.es 71

7: CONTROL STRUCTURES
Jumps, Tests etc. /.5
Error hand 1 ing 8,3

8: TEXT & WINDOWS
Text attributes ... 87
Cursor functions 89
Conversion functions 91
Cursor commands 92
Text input/output 96
Advanced text commands 98
Windows 99
Slider bars 104
Fon ts 105

Graphic text . „,..,„ 105
Instal1 ing new fon ts 109
Trouble shooting „., . ,. . 109

9s MATHS COMMANDS
Trigonometric functions Ill
Standard mathematical functions 114
Creating random sequences 115
Manupulating numbers 116

10: SCREENS
The def ault screen „ . ,.., „. „ . 119

• Def in ing a screen .., 119
Special screen modes 121

: - Extra ha 1 f -br ig ht mode (EHB) .. ., ,,.. „ „ 122
Hold and modigy mode (HAM) . 122
Load ing a screen ,. , ., 124
Saving a screen 124
Moving a screen 125
Screen control commands ... 127
Defining the screen colours „„„„„„„ 131
Clearing the screen .. 131
M a n u p u. 1 a t i n g the c o n ten t s o f a s c r e e n .1.3 2
Scrol1 ing the screen 133
Screen swi tching „ ... 134
Screen Synchronization „.,,„., 136
Special effects „ ,'. , 136
Changing the copper list 142
Hin ts and ti ps .. „., „ , 144

us HARDWARE: SPRITES
The sprite commands 145
Computed sprites ..„..„.. .1.46
Creating an i ndi vidua1 ha rd wa re s prite „..„..... 149
The? s p r i +.<? p a l » H : p „ - „ „.,„„„„ „ „ „ ± SO

Controlling sprites ,,.... 151
Conversion functions 153

12s BUTTER OBJECTS
The bob control commands•*....• 161

13: OBJECT CONTROL
The mouse pointer - • • - - - - 165
Reading the joystick 16/
Deleting col 1 isions 169

with a sprite • 169
with a bob • • • - - 170
between sprites and bobs 1/0
with ret.angul.ar blocks . . 1/2

Bob priority•...•.-...-> 174
Miscellaneous commands 17b

14; ANAL
ANAL, principies 1/6
ANAL tutorial 177

Moving an object 177
An i ma t ion 179
Simple loops 180
Variables and expressions 181

Internal registers 181
Ex ternal reg isters 181
Special reg isters .. 182
Operators .,,„.„ „. 182

Making decisions 183
Generating an attack wave for a game 184
Recording a complex movement sequence 185

ANAL commands 187
ANAL functions 191
Controlling ANAL programs from Basic 193
ANAL errors u......... n ...«... u»»n. 195
Error messages 196

Animation channels 197
Animating a computed sprite .,.,„„. 197
Animating a bob .„.....„„.. 197
Moving a screen 198
Hardware scrol 1 ing ... 198
Changing the screen size „...„. . „ .1.99
Rainbows 199

Ad van cee techn iques 199
The Autotest system 199
Autotest commands 200
Inside Autotest 201

Timing considerations .,.„...,....„„..., „„„„.,, 201
Beating the 16 object 1 imit .„„,.» 202
STOS compatible animation commands „„„ 202

15: BACKGROUND GRAPHICS
Icons 207
Screen blocks „.,.„... 209

16s MENUS
Using a menu ...„., 212
Creating a simple menu 212

Setting the title line 212
Read ing a simple menu „, .,.„„„ „ „ „ „ 2.1.4

Advanced menues features „ „ , 214
The menu hierarchy „ „ „ , „ „ 215
Mi e? Y b c:> ** i- <:l ̂ K <:> t- I. c: *.i ̂- ==. „....„..„ „ _....„„ iVl 1 <?

Menu con trol commands „ „ 220
Embedded menu commands 222

Alternative menu styles — .» 227
iioveable menus 229

Moving a menu within a program 231
D i s p1ay ing a men u a t t he cu rs or p o s it ion 23 2

17s SOUND AND MUSIC
Simple sound effects 233
Sound channels „..,.„ 234
Sampled sound 235

Creating a sample bank » 23/
Music 238

Playing a note 240
Waveforms and envelopes 241

Speech .. 246
Filter effects 248

18: THE KEYBOARD

Input/Output 252

19; OTHER COMMANDS 254

20: DISC ACCESS

Drives and volumes .«„...,, ».,„».„ 260
Drives«....>>......... u............»<... 260
Volumes „ „ „ 260
Log i cal devi ces „...„„» „«.,„.„„.„ 261
Cross Dos 261

Dir changing ., ., 262
Common disc operations „»»„„.„.„ „ .. 265
Selecting a file .,.,.« 266
Running an AMOS program from disc: . 266
Checking for the existence of a file „. „ 267

. Disc files 268
* Sequential f iles ,.„,... „.......... „ „ 268

Random access files 271
The printer .„„..„. 274
External devices . „ 274

21; SCREEN COMPACTION 276

22s MACIHNE LEVEL INSTRUCTIONS
Number conversion „ „ „ 279
Memory manipulation . „ „ .,., 279
Bi twise operations „. 282

. Using assembly language 285
Accessing the system libraries .„.„.... 287
Inside AMOS Basic ...».„.....„. 288

23: COMMAND INDEX 289

. • • 1: INTRODUCTION

WELCOME to the exciting world of AMOS - The Creator! As you know, the

Amiga is a truly amazing computer. For the first time, all that power

is at your fingertips.

In Septemper 1988, Mandarin Software released STOS Basic for ST. This
made history as the first programming language to reach number one in
the ST Gallup games charts! Now STOS has been rewritten from the gound
up to produce AMOS Basic for the Amiga. AMOS Basic includes a vast
range of over 500 commands - many of which are staggeringly powerful.
You can, for instance, bounce a screen,, or animate a sprite using just
a s i n g 1 e B a s i c i n s t r u c t i o n .

AMOS is not just another version of Basic - it's a dedicated games
creation system which comes with its own built-in Animation Language
(AMAL). AMAL programs are executed 50 times a second using a powerful
interrupt system. They can be used to generate anything from the attack
waves in an arcade game, to a silky-smooth hardware scrolling efect. At
the same time, your Basic program can be doing something completely
different!

Whatever you knowledge of programming, AMOS has something to offer
you. If you have newer written a game before, the prospect of creating
your first game may be quite daunting. But do bear in mind that many of
the all-time classics ara- uncomplicated programs with one or two
original features -- just look at Tetris for example. The strength of
your game will depend on the quality of your ideas, and not just your
programming skill. With a little help from AMOS, you'll be able to
produce professional-looking games with just a fraction of the normal
effort. All you really need is imagination.

If you've written a game in AMOS basic,, don't keep it to yourself.
Mandarin Software is very keen to publish any program written using
AMOS. Don't worry if your programming is a little rough. If your ideas
are good enough, you could have a real future as a professional games
writer. So please send us your programs,. Mandarin would also be
delighted to hear your comments or suggestions for the AMOS system,.
Several features in AMOS were taken directly from the ideas which were
sent to us from existing STOS users. Address your correspondence for
the attention of Richard Manner, Development Manager, Mandarin
Software, Adlington Park, Ad ling ton, Macclesfield SK10 4NP,

21! GETTING STARTED

AMOS Basic is a truly remarkable package, capable of creating games
which were previously beyond your wildest dreams., All this powerful
•features which make the Amiga so irresistible have been incorporated
into this amazing system. With help of AMOS Basic you can develop
programs which would tax the skills of even the most expert assembly
language programmer.

You can for instance, effortlessly animate up to 56 hardware sprites
s i m u 11 a n e o u s 1 y ! T h :i. s i s a r e a 1 a c h i e v e m e n t, e s p e c i a 11 y w h e n y a u
consider that the Amiga's hardware only actually provides you with
eight.

If you need even more action on the screen, you can use the Amiga's
blitter chip as well. Blitter objects can be created in any graphics
mode you like, including HAM) The only limit to the number of bobs on
t h e. s c r e e n i s the a m a u n t o f a v a i 1 a b 1 e in e m o r y.

Any combination of the Amiga's graphics modes can be displayed on the
screen at once. Hardware scrolling isn't jsut possible., it's easy!
There's a built-in SCREEN OFFSET command which allows you to perform
the entire process directly.

In fact, the only hard part of AMOS Basic is knowing where to start!
AMOS supports over 500 Basic commands, and if you're never used Basic
before, you may feel a little overawed by the sheer scale of this
system,. When you're in unfamiliar territory,, it's always useful to have
a *GUIDE* (Thanks to me!, Mr.Spaghetto ;••••) to show you around and point
out some of the notable landmarks,, That's the purpose of this chapter.

Backup AMOS Know* !

Before continuing however, it's vital that you back up the entire AMOS
Basic package on fresh discs. This will safeguard your copy of AMOS
against accidental mistakes. You'll now be able to play around with the
system as much as you like, without, the risk of destroying something
important.

If the worst comes to the worst,, we at Mandarin will be happy to
replace your disc for a nominal handing charge. But you'll obviously be
d e p r i v e d o f A M 0 S B a s i c w h :i. 1 e i t' s b e i n g r e - d u p 1 i c a t e d,

The installation procedure varies depending on your precies set-up,
but it can usually be accomplished in a matter of minutes,.

How to backup?

If you have got this Ascii file into your hands,, you propably also
have some cool copy-prog,, for example? X-Copy,, I)--Copy or other...

Place the originals into a safe place and use the fresh copies

Loading AMOS Basic

now.

As you might expect. Ai'lOfi Basic car, b«> executed in A uar ioty ,-,-(•

different ways. You can, for instance, load AMOS directly from the
Workbench by selecting its icon with the left mouse button. Once you've
entered AMOS in this way., you will be able to flick back and foth to

the Workbench by pressing the Amiga and A keys from the keyboard.

In practive however, the Workbench consumes valuable memory which
would' be better used to hold your Basic programs. So if you're a
serious user, you'll propably prefer to boot up AMOS as part of your
normal start-up sequence. This will allow you to achieve the maximum
possible results from the AMOS system.

To load AMOS Basics

* Turn off your Amiga and wait for about ten sees.
* Place a backup of the AMOS program disc (disc 1) into DFOs
* Now switch on your Amiga. AMOS will load into memory

: automatically.,

% Hit a key to remove the information box and thus enter the

AMOS system.

AMOS tutorial

The first thing you'll see when you enter AMOS Basic is the editor
window. This is extremely easy to use, and if you've a little previous
experience with computers it should be self-explanatory. Feel free to
experiment as much as you like. The AMOS editor is quite intelligent,
and you Are unlikely to make any serious mistakes.

Now you've seen the editor window, It's time to explore some of the,
features that make AMOS Basic: really stand out from the crowd. •;

L o a d i n g a p r o g r a m

We'll start off by showing you how you can load one of the terrific
games from the AMOS data disc. We'll take the Number Leap game as an
e x a m p l e s -•; ' . . ' . " . - . - . .

* Insert the AflOS__DATA disc into drive DFOs
* Hold down an Amiga key on the keyboard and press "L",, This will

bring up a standard file selector on the screen.
* Click on the disc drice label DFO to inform AMOS that you have

changed the disc
t At the centre of the file selector there will be a list of

programs which can be loaded into AMOS Basic.
* To select the Number Leap program, just position the mouse pointer
over the file:

Mumber_j_eap, AMOS • ...

The file you. have chosen will be highlighted accordingly.

* Once you've chosen your file, you can load it by clicking twice
on the left mouse button. Your game will now be entered from the
AMOS DATA disc and you will be returned to the original editor-
scree n . The con ten ts af t hi s window wi 11 be u pda ted to d isp 1 ay
your new program listing.

* You can run this program by selecting the RUN button from the main
menu area (or hit Fl if you're feeling lazy).

The editor screen will now disappear completely and Number Leap will
be executed in front of your eyes. After you've played with this game
to your satisfaction, you c::<sn exit to AMOS Basic by pressing the CTRL
and C simultaneously.

CTRL+C provides an effective way of breaking into the vast majority
of AMOS programs. It can be disabled from within your program using a
BREAK OFF command for extra security. When the program has been broken
into yu can flick straight back to the editor by pressing the Spacebar
key from the keyboard.

Deleting a program

Now that we've finished with the Number Leap program, we can erase it
from memory with the NEW command. You won't find this option on the *
main menu, as it's been placed in a separate SYSTEM menu. This can be
brought into view by moving the mouse pointer over the menu window and
holding down the right mouse button.

To delete a programs , - * ' . .

* Ensure the mouse pointer is over is over the menu area.
* Hold the Right mouse button down to bring up the SYSTEM menu,.
* While the button is depressed, move the pointer over the NEW option

and select it with the Left mouse key. Alternatively, you can
execute this option directly from the keyboard by pressing
Shift+F9.

t Type Y to confirm the operation or N to abort.
* If the current program hasn't been saved, you'll been asked whether

to store it onto the disc. If you select the YES option, you'll
be presented with an AMOS file selector,, Otherwise your program ;
will be totally erased. .-•.-•:, .

Direct mode • ' " ' . • . . ; • *

We'll now have a quick look at the direct mode. This forms the centre
of the AMOS Basic package and allows you to experiment with your
routines and immediately observe, the effects.

It's important to recognize that all the screens, sprites, and music:
defined in your program are completely separate from the Editor window.
So no matter what you do in direct mode, you'll be able to return to
your listing with just a single keypress,, .

* En te r di re c t mode by pressi ng ESCa pe„ The edi to r w i ndow w i11 s1i d e
away and you'll be presented with the main program display.

Towards the bottom of this area will be a small screen which can be
used to enter your direct mode commands. Try typing the following line,
pressing Return to "execute".

Print "Your name" ; . ; ; .:

Insert your name between the quotes to print your names on the Amiga's
screen. Now press the UP and DOWN arrows from the keyboard to move the
window around the display area. As you can see, the Direct mode window
is totally independent of the main program screen,,

Animation i • ; • 7

So much for the Direct (node. Let's experiment with some of the AMOS

to load a set of sprite images into memory. Stay in direct mode and
enter the indented lines in bold as you come to them,.

Listing the sprite files

We'll begin by listing all the available sprite files to the Amiga's

screen.
* Ensure that the AMOS DATA disc is still in the DFO:
* Display the disc file directory with the lines

Dir "AMOS DATAsSprites/"

This will display the sprite files we've supplied on the AMOS data
disc. These files contain all the images which are used in the various
example programs. You can create your own images using the Sprite
definer accessory on the ANOS Program disc.

The sprite definer incorporates a host of powerful drawing features
which make it extremely easy to generate professional-quality animation
sequences in your games. .

Loading a sprite file

We can now load these sprites using the LOAD command,, The sprites will
load into a special memory bank so don't except to see any sprites to
appear yet! Let's enter the sprites used by the Number Leap game with
the fo11o wing co mma nds

Load "AHOS_.DATAsSprites/Frog_Sprites.abk"

If you make a mistake, hit Fl to get your previous line,, This line can
be then edited using the normal cursor keys and may be re-executed by
pressing Return.

Now let's also load up a music file using a similar load command:

Load "AMGS.JDATA_Sprites/Funkey.abk" : .̂ .

In order to check whether the sprites and music have been succesfully
loaded into memory, we'll call up the LISTBAMK instruction like so:

. L i s t b a n k , ., • ;••-..

This prints a line like:: , . ;

1 - Sprites S;*0682B0 L:000040 ' • . • .
3 - Music Ss*043878 LsOOBlFE " ; •••:"•*••

• •

Don't worry if the numbers do not correspond as they will change
depending on the available memory. The number of sprites we've just
loaded can be r e tu r ned d ir e c 11y wi t h the L E NG TH f u nct i o n„

Print Length(l) ., •
(results 64)

Setting the sprite colours

Each set of sprite images has its own set of colour values stored on
the disc. Since these can be very different from your current screen
colours, it's useful to be able? to GRAB the colours from the sprite

bank and copy thein in to an existinq screen,, This can be accomp 1 ished
with the GET SPRITE PALETTE command. Enter the lines

Get Sprite Palette

Ail the colours in the main program screen will change immediately, but
the direct mode window will be completely unaffected because it's been
assigned its own separate list of colour values by the AMOS system.

Displaying a sprite

Sprites can be displayed anywhere on the screen using a simple AMOS
B a s i c s p !••• i t e c o m m a n d . H e re's a n e x a m p 1 e s

Sprite 8,129,50,62 = : • . *

Animating a sprite . :;

Let's animate this object using The "Ailos Animation Language". AMAL is
a unique animation system which can be used to move or animate your
objects at incredible speed.

Note that when you're entering the following example programs,, it's
essential to type each line fcexactly* as its appreas in the listing, as
otherwise you nM\y get an unexpected syntax error,,

Sprite 8,129,150,62 ' \ .
A m a l 8 , " A n iift ' 0 , (6 2 , 5) (6 3 , 5) (6 4 , 5) ; " s A m a l O n .

The program above animates a small duck on the screen„ Whilst it's
being manupulated,, the sprite en be moved around using the SPRITE
command. Examples

Sprite 8,300,50, • '

Moving a sprite

Now for some movement!

Sprite 8,129,150,62 : A* = "Anim 0,(62,5)(63,5)(64,5);"
A*=A*+"Loop: Move 320,0,100; Move --320,0,, .1.00; Jump Loop"
Amal 8,A* : Amal On

This programs animates the duck and moves it back and forth across the
screen, using .just t h r e e 1 i n e s !

Although the instructions between the quotes may look like Basic,
they're actually written in AMAL. All AMAL programs Are executed 50
times a second and they can be exploited to produce silky smooth
animation effects independently of your Basic programs.

Just to prove how amazing AMAL really is,, hit ESC to jump back to the
Basic editor. After a few moments;, return to direct mode. Your sprite
will still be bouncing accross the screen as if nothing had happened!

M u s i c m a e s t r o ! .-'•'.•'

For a finale, let's play the music! Ensure you're still in direct mode,
t u r n UD t h e uolumra an y n u f man i. +. a I" .arid s t i P t -lh«> „ , . , „ ; , . „.., , , , r> .; P> -SI-,,,,

MUSIC command like so:

Music 1

By the way, you can stop the music: with the commands

Music Off

T he j o y rne y con t i nu e s

Hopefully, you'll now have a pretty good idea of what AMOS Basic can
achieve. But so fat we've only looked at a tiny fraction of AMOS
Basic's power,, As you experiment with the AMOS package, you'll quickly
discover a whole new world, full of exciting possibilities..

AMOS Basic can't, of course, transform yau into an expert games _
programmer overnight. Like any programming language, it does take a
little time to familiarise yourself with the entire repertoire of
commands. We'll therefore end.this section with a few guidelines to
help you on your way. ,

Hints and tips

% The best way to learn about AMOS is to create small programs to
animate sprites,, scroll screens or generate hi-score tables. Once

you've created a little confidence,, you'll then be able to incorporate
these routines into an actual game.

% Don't be overawed by the sheer size of the AMOS Basic language. In
practive, you can achieve terrific effects with only a tiny

fraction of the 500 or so commands available from AMOS, Start by
mastering just a couple of instructions such as SPRITE and BOB,, and
then work slowly through the various sections. As you progress, you'll
gradually build-up a detailed knowledge of the AMOS system.

% Although we've attempted to make this package as easy to use as
possible, a thorough groundging of the general principles of Basic

programming is invaluable. If you're new to Basic, you may find it
helpful to purchase an introductory text such as "Alcock's Illustrating , .
Basic. (Cambridge University Press.)

* P1an your games car ef u11y on pape r„ 11" s amazing how man y prob1ems 10
can be completely avoided at the early design stages. Never attempt

to tackle really large projects without prior preparation. It's the
easiest way to get permanently lost.

* When you're writing a game, try to concentrate on the quality of
the game play rather than the special effects. The graphics and

music: can always be added later if the idea's are good enough.

THE EDITOR

The AMOS editor provides you with a massive range of editing
facilities,, Wot only is it exceptionally powerful, but it's also
delightfully easy to use. All commands can be executed either directly
from the screen,, or via an impressive range of simple keyboard
alternatives. It's so friendly in fact, that if you've a little
experience with computers,, you'll propably be able to use it straight
out of the box.

One of the most exciting features of this sytem, is that the listing
is displayed completely separately from your main program screen. So
you can instantly flick from your program display to the editor window
using a single keypress (ESCape).

If you've plenty of memory,, it's also possible to load several
programs in AMOS Basic at a time. Each program can be edited totally
independently, and it's possible to efforlessly switch between the
various programs in memory by pressing just two keys from the editor.

The first thing you see after AMOS has loaded into memory is a
standard credit screen. Applause applause! Press a key to remove this
window and enter the editor. . .

The menu win clow

At the top of the screen, there's a menu window containing a list of
the currently available commands. This forms the gateway to all AMO S3
Basic's powerful editing features,, Command can be quickly executed by
moving the mouse pointer over an item, and hitting the left mouse
button. Each command is also assigned to a particular function key.

In addition to the main menu, there &ns also a number of other menus.
The most important of these menus is the SYSTEM menu. This can be
brought into view by either holding down the right mouse button, ex-
pressing the shift key from the keyboard.

The SYSTEM manu contains a range of options such as LOAD, SAVE, NEW,
etc. Like the main menu, all options can be executed using either the
left mouse button, or by pressing an appropriate function key.

The information line

1 L=l Oi Text=40000 Chip=9i000 Fast=0 Editsexample '

The markers at the far left display the editor mode ((I)nsert or
(O)verwrite). There's also an indication of the (L)ine and (C)oiumn you •• :

Are presently editing. Alongside these markers is a list of three
numbers; '„

TEXTs Measures the amount of memory which has been assigned to the "
editor window. This can be adjusted within All OS Basic using a simple
SET BUFFER command from the SEARCH MENU.

CHIP; Free Chipmem . . 12

r A S T s f r e e F i s t m e m ; U l h o , , e v e , - p o s e i b l n , t h i s w i l l b e u s e d .

EDIT; Displays the name of the program you are currently editing.

Initially this area will totally blank, but when you load or save a
Program to disc, the new filename will be automatically entered to the
information line.

The editor window .

The editor window forms the heart of the AMOS system, and allows you to .
type your Basic program listings directly from the keyboard. All text
is inserted at the current cursor position,, which is indicated by a - . ,
f1a shin g ho r i zon t a1 1i n e.

At the start of your session, the cursor will always be placed at the
top left hand corner of the editing window. It can be moved around the
current line using the left and right cursor keys.

Your line can be edited on a character by character basis using the
Delete and Backspace keys., Delete erases the character immediately
underneath the cursor, whereas Backspace deletes the character to the
left of this cursor. As an example, type the lines

print "AMOS" • ..

When you press Return, your new line will be entered into AMOS Basic.
Anything AMOS recognices as a command will be immediately converted to
special format. All Basic commands begin with a Capital letter and
continue in lower case. So the previous line will be displayed ass

Print "AMOS" ' : - ,

Similarly, all AMOS variables and procedures are displayed in CAPITALS. - •:
This lets you quickly check whether you've made a mistake in one of
your program lines,, Supposing for instance, you'd entered a line like:

inpit "What's your name;";name$ ' . :

This would be displayed ass . - '

Inpit "What's your name;";NAME*

Since INPIT is in UPPER case, it's immediately obvious that you've made
an error of some sort,,

Ok- Now for a little fun. Move the cursor under the Print command you
entered a few moments ago and type in the following lines of Basic
Instructions.

centre "<Touch 'n' Type Demo> 13
do

x*~inkey* : if x* <> "" then print x* '
loop • • • • . • :

Don't forget to press the Return key after each and every line,, Wow
move the cursor through your new program using the arrow keys,, Finally,,
press the Fl to run this program.

The EDITOR WINDOW will disappear and a separate PROGRAM display will
flip into place. The program now expects you to type in some text from
the keyboard. As you can see, the program screen has its own
independent cursor line,, This is totally separate to the one used by
the editor. So you can play about as much as you like, without changing
y our c u r r e n t e d111ng po s i t io n „

After you've finished,, press CTRL+C to abort the program. A thin line
will now be displayed over the screen. This can moved using the up ano
down cursor arrows,,

Program Interrupted at line 4

>»Loop

Pressing the space bar at this point would return you back to editor.
But since we've already seen the editor, let's have a brief look at the
Direct mode instead. Hit the ESCape key to flip this mode into place.

An introduction to Direct mode

DIRECT mode provides you with an easy way of testing your Basic
programs. For the time being, we'll examine just a couple? of its more
i n t e r e s t i n g f e a t u r e s.

All direct mode commands are entered into a special screen which is
completely inde pen tent, from the program display. You can move this
screen up or down using the arrow keys. ••-,-.

At the top of the window, there's a list of 20 function key-
assignments. These represent a list of commands which have been
previously assigned to the various function keys. They can be accessed
by hitting the left or right Amiga--keys in combination with one of the
various function keys,,

Whilst you're in direct mode, you can execute any Basic: instructions
you like. The only exceptions are things like loops or procedures. As
with the editor, all commands should be entered into the computer by
pressing the Return key,, Here are some examples:

P r i n t 42 < ..., - • •

ANSWERS. Print ANSWER*? ' . • ,
C u r s O f f • ' • . • • • • . . . - •

Close Workbench (Saves around 40k but ABORTS multi- :

tasking operations!)

It's important to recognize that no matter what you do in direct mode,
there will be absolutely no effect on the current program listing. So
you can mess about to your heart's content, with no risk of deleting
something in your Basic program,, - •• •

It's now time to return to the Editor window,, So wave a fond farewell
to Direct mode, and enter the editor by pressing ESCape. :

Loading a program 14

We'll now discuss the various procedures for loading and saving your
programs on the disc. As usual, these options can be executed either
from the MENU window or using a range of simple two-key commands from
the editor. The fastest way to load a program is to hold down either of
Amiga keys, and press the letter L.

You'll now be presented with the standard AMOS file selector window,.
Nowadays, file selectors have become a familiar part of most packages
available on the Amiga. So if you've used one before, the AilOS system
will hold no real surprises,, However, since the file-selector is such
an integral part of AMOS Basic, it's well worth explaining it in- some
detaiX•

The AMOS file selector

Selecting a file from the disc couldn't be easier. Simply move the
cursor over the required filename so that it's highlighted in reversed
text. To load this file into memory, click twice on the left mouse
button. Alternatively,, you can enter the name straight from the
keyboard, and just press Return,,

If you make a mistake, and wish to leave the selector without loading
a file, move the mouse over the Quit button and select it with the left
button!. AMOS will abort your operation and display a "Wot Done" message
on the information line.

As an example, place you COPY of the AMOS program disc into the
internal drive and press AMIGA+L to load a file. If you've been
following out tutorial, AMOS will give you the option of saving the
existing program first. Unless you've made any interesting changes,,
press "N" to anter the file-selector. Otherwise, see "saving a program"
for further instructions.

When the file selector appears, look out for a file with the name
"Hithere,.AI1OS" „ Once you've found it, load it. The following listing
will be loaded to amos basic™

Rem Hi
Cls 0
Do
Rem

there
: Rem

AHOS user;
Clear the sscreen

get some random numbers
X=Rnd(320)
Ink
Text

Loop

I „ P ;
X,, Y,"

sY=Rnd(200]
Rem add a 3
Hi there 1"

isT-Rnd
.ittle
s Rem

wi

(1

th colour

5):P=Rnd(
colour
graphic tex

zero

15)

t

Move the text cursor over the text "Hi There!" and insert you own
message- Mow press Fi to run the program,, The program display will
rapidly fill up with do?:ens of copies of your text,, Press CTRL+C to
exi t f ram t h i s rou tine.

Saving & Basic program ' - 15

Return to the editor window, and type ALT+S to save your current
program onto the disc. If you feel like a change, hold down the right
mouse key and click on the "Save as" option from the SYSTEM menu with
the left button„ Either way you'll jump straight back to the AIIOS file
selector window,.

You should now enter the name of your new file straight from the
keyboard. As you type, your letters will appear in a small window at
the bottom of the selector. Like the editor, there's a cursor at the
current typing position. This cursor can be moved around using all the
normal editing keys Finally, press Return to save your prog to disc.

Scrolling through your files

If your disc is reasonably full, the standard selection window won't be
able to list the entire contents of your disc at once. You can page
through the listing using the scroll bar to the left of the selection
w i n d o w «

Changing the current drive

To the right of the file window, there's a list of drive names,, The
precise contents of the window will naturally depend on the devices
you've connected to your Amiga,, If you have several drives, you can
switch between them by simply clicking on the appropriate name,, (he
direH-ory of this drive wlil now be entered into the selection window,

Changing the directory

When you search through the directly listing, you'll discover several
names'with an asterix character "*" in front of them. These are not
•files at all. They are entire directories in their own right. -

You can enter one of these folders by selecting them with the left
mouse button. You may then choose your files directly from this folder.
Note that only the files with the current extension ".AMOS" will be
displayed . .

Once you.' ve opened a directory ,, ycm c:an set it as the def auIt using
the SETDIR button. The next time you enter the file selector or obtain
a directory listing with DIR, your chosen folder will be entered
automatically. Similarly,, you can move back to the previous directory
by clicking on the PARENT button.

Setting the search path

Normally, AMOS will search for all filenames with the extension
".AMOS", If you want to laod a file with another extension such as
.BAK, you can edit the search pattern directly. This can be acomplished ,
in the following way.

Move the text cursor to the PATH window by pressing with the up arrow
from the keyboard. Now type your new path and hist Return. A full
description of the required syntax can be found in the section on the
DIR command.

WARNING!; AMOS uses its own individual search patterns which are very 16
different from the standard Amiga Dos System. If you're unsure, delete
the entire line up to the current VOLUME or DRIVE name and hit Return.
This will present you with a full list of ALL the files on the present
disc. .

Using the file selector

Interestingly enough, it's also possible to call this file--selector
directly from your own programs. For a demonstration, enter DIRECT mode
and type the following lines

Print Fselff*,,*)

After you've chosen a file, the name you've selected will be printed
straight onto screen! See FSEL$ for a detailed explanation of this
command.

Editor tutorial , •-• .

We'll now have a brief look at some of the more advanced editing

features available from the AMOS editor. We'll start by loading an
example program from the disc:,. Just for a challenge, we've placed this
in a separate MANUAL folder on the AMOS prog rain disc.

Insert your COPY of the program disc into your Amiga'

Scrolling through a listing

Alongside the main editor window are two "scroll bars". These allow you

to page through your listing with the mouse.

Hove the mouse pointer over the Vertical bar and hold down the left
button. Wow drag the bar down the screen. The editor window will
scrolls moothly downwards through the listing. You can also scroll the
prog ram using the Arrow Icons at the top and bottom of this bar.
Clicking on these icons moves the line exactly one place in the
require d d i r e c t i o n .,

At the far bottom of the editor window., there's a horizonal scroll
bar. This can be used to move the window left and right in exactly the
same way. _ , ' • • . .

If you prefer to use the keyboard for your editing, you'll be pleased
to discover that there are dozens of equivalent keyboard options as
well. For example;

CTRL+UP Arrow shift the listing to the previous page.
CTRL.+DOWN Arrow moves the listing to the next page

All the keyboard options obey the same basic principles. So once you've
familiarised yourself with one command, the rest are easy. A full list
of these commands can be found towards the end of this chapter.

Now we've looked at the program. It's time to actually change
something. Search through the program listing until you find the line:

ALERT[5O,,"Alert box","", "Ok", "Cancel", 1, 2]

This calls a Basic procedure which displays a working alert box on the
screen ., The f ormat of this procedure is:

ALERTLY coord,Title 1*,Title 2*,Button 1$, But ton 2$,Paper,, Ink]

Let's change this alert to something a little more exciting., Hove the
cursor over the above statement, and edit the line with the cursor keys
so that it look like so: • " • . . • .

ALERTL 50," Ex terminate !",, "Securitate"," Yep!", "Yep!" ,1,3]

Execute the program by pressing Fi or selecting RUN from the main menu.
You'll be given the unique option of stopping the lamest Amiga-group in
the World in its tracks. Select a button with the mouse and make your
choice i

In practive, you can change the title and the buttons to literally
anything you like. Feel free to use this routine in your own progs.

Hopefully, the above example will have provided you with a real spur
to use procedures in your own programs,. In order to aid you. in this
task, we've built a powerful range of special editing features into the
AMOS editor.

Label/procedure searches

If your program is very long, it can be quite hard to find the starting
points of your various procedure definitions. We've therefore included
the ability to jump straight to the next procedure definition in your
program, using just two keys (Alt+Arrow)

For an example, place the cursor at the start of the listing and ,
press Alt+down arrow. Your cursor will be immediately moved to the
beginning of the first procedure definition in the current program
(ALERT). You can repeat this process to jump to each procedure
definition in turn,.

This system is not just limited to procedures of course.. It also
works equally well with Labels or line numbers. So even if you don't
n e e d p r o c e d u r e s,, you ' 11 s t i 11 f i n d a u s e f o r t h i s feat u r e.

17

Folding a procedure definition . . .

If you build up your programs out of a list of frequently used
procedures, your lisings an easily be cluttered with the definitions of
all your various library routines.

Fortunately, help is at hand. With a simple call to the Fold command,
you can hide away any of your procedure definitions from your listings.
These routines can be used in your program as normal, but their
definitions will be replaced by a single Procedures statement. Example!;

Position the cursor anywhere in the definition of ALERT and click on
the Fold/Unfold option from the menu window,, Bingi The contents of your
procedure will vanish into thin air! Despite this, you can run the
program with no ill effects. The only change has been in the appearance
of the listing in the editor window.

Just select Fold/Unfold again, and your procedure will be expanded to
it's fully glory. .

It's also possible to fold ALL the procedures in your program at
once. This uses an option on the SEARCH menu called "Close All". To
bring the Sea r c h menu on to t he s creen ,, c 1 i c: k on the bu 11 on wi t h t he
same name,, or press F5. from the keyboard. Wow select the Close All
button to remove the procedure definitions from the current program.

The effect on EXAMPLE 3.1 is dramatic! The entire program now fits
into just a single screen. So you can instantly see the procedures
we've been using in the program. Each procedure definition can be
edited individually by expanding it with the Fold/Unfold button. Or you
can unfold the whole program with "Open All" from the Search menu.

18

Search/Replace

The search/replace commands provided by the AMOS Basic editor are
accessed through a special Search menu which can be called up either
from the menu window or by pressing function key F4.

Finding an item .

We will continue our tutorial with a brief look at of some of the
Search/replace instructions. Let's start with the FIND command.

This can be executed either directly from the Search menu or using

the keys CTRL+F. When you select this command, you'll be asked to enter

the search string.

For example, hit CTRL+F and type "Rem" at the prompt, AMOS ill ^
search for the next "Rem" statement in your program, starting from the
current cursor position. If the search is succesful, then cursor will
be replaced over the requested item.

The search can now be repeated from this point with the "Find Next"

option (CTRL+W).

Replace

Supposing we wanted to change all the Rem statements in a program with
the equivalent "'" characters. This could be accomplished with the
"Replace" command.

In order to use this option,, it's necessary to define the replacement
string. So the first time you call up replace, you will always be asked
to enter this string from the keyboard.

Press CTRL+R, type in ' (apostophe) at the prompt and hit the return
key to enter it into the computer. You now set the search string with
the "Find" option like so:

* Press CTRL+F to select the FIND option. -
* Type "Rem" into the information line.
t The cursor will then be moved straight to the next Rein statement in

y o u r p r og r a m 1i s t ing.

To change this to the replacement string and jump to the next :
occurrence, select Replace (CTRL+R) once again. Alternatively, if the
Rem is in the middle of the line, you'll need to skip it, because AMOS
only allows you to substitute a quote for this command at the start of
a line. You can avoid this problem and jump directly to the next item
in your program using "Find Next",

Cut and paste

The AMOS Block commands allow you to cut out parts of your programs and
save them in memory for future use. Once you've created a block, you
can copy it anywhere you. like in the current listing.

Here's an example of this feature in action. Let's take the previous
ALERT program, and cut out a single procedure. Place the mouse pointer
over the first line of the INVERT procedure, and depress the right
mouse button. We can now enter this procedure into a block usinq the
mouse. As you move the mouse, the selected Area will be highlighted in
reverse.

We can now grab this area into memory using "Cut". When you press
CTRL+C from the keyboard, the procedure will be removed from the
listing and stored into memory. It's now possible to paste this block
anywhere you like in your program. For the purposes of our example,
move the text cursor down to the bottom of the listing, and call the
Paste optin with CTRL+P. The INVERT procedure wlil now be copied to the
current cursor position.

Multiple programs and accessories

Piuitiple programs

Although AMOS only allows you to edit a single program at a time,,
there's no limit to the number of programs which can be installed into
memory, other than the amount of available storage space- Once you've
installed a program in this way, you can execute it straight from
Editor window with the "Fain Other" option.

Supposing, for instance, you encounter a problem in one of your
programs. AMOS will let you effortlessly swap your existing program
into memory so that you can freely experiment with the various
possibilities until you find a solution. After you've finished, you can
now grab your new routine into memory with the cut option,, and flick
back into your original program by pressing just two keys! The new
routine can the be pasted into position, and you can continue with your
program as before. The ability to stop everything and try out your
ideas immediately, is incredibly valuable in practice.

Another possibility is to permanently keep all the most commondly
neede utilities such as the sprite definer or the map editor in the
memory. You can now access these utilities instantaneously., whenever
you need them.

In fact, AMOS includes a special ACCESSORY system which makes this
even easier. The utility programs can be given total access to all the
memory banks in your main programs. So the sprite definer can grab the
images straight from your current program,, and modify them directly,,
This tehcnuque speeds up the overall development process by an amazing
degree! •-,..-

Let's have a quick demonstration of these facilities. Enter the
following small prog into the editors

Print "This is program One" • •'(
Boom ' •

We can now push this program into memory using the push command. This
is called up by pressing AMIGA+P. You'll then be asked to enter the
name of your program from the information line. Type in a name like . .. /
"Programi" at this point. The edit screen will be cleared completely. :

The new window is totally separated from your original program. As a \
demonstration, enter a second routine like so:

Print "This is program Two"
Shoot ,,

This program c:an now be executed from the edi tor window usinq RUN (F1). 20
But when your return you can immediately jump to the old one with the
"Flick" option. Try pressing AMIGA+F. As before,, you'll be asked to
enter a name for your program,, Use a name like " prograrn2" for this
purpose. The editor will now jump straight to your original program as -
if by magic It's possible to repeat this process to jump back and >•''
forth between the two programs. Each program is entirely independent
and can have it's list of own banks and program screens. "••.••

So far,, we've only discussed how you can use two programs at a time.
However, you can actually have as many program in memory as you like.
These programs can be selected individually using the "Run Other" and
"Edit Other" options from the Menu window,, When you call these
commands, a special "program" selector will be displayed on the screen,,

The p-nqram e l e c t o r is almost identical to the familiar AMOS file
selector/The only difference is that it allows you to choose a program
from memory rather than from the disc, You cars select a program by
simply highlighting it with the mouse cursor and clicking once on the
left button.

Accessories

In order to distinguish accessories from normal Basic programs, they're
assigned a ".ACC" extension instead of the more usual ".AMOS".
Accessories can be loaded into memory like any normal program using the
"Load Other" command.

Load Other presents you with a normal fileselector which can be used
to load an accessory program from the disc. After the accessory has
been installed into memory you will be returned straight back to your
current program,. You can now run this accessory at any time using the
Run Other option from the menu window. Simply move the mouse pointer-
over your required accessory and press the left button™

Alternatively, you can load all the accessories from the current disc
using the Accnes/Load feature. This option can be found on the System
menu which is displayed when you hold down the right mouse button.
Accnew/Load erases all existing accessories and loads a new set from
the current disc.

For a demonstration, place the AMOS Program disc into your drive, and
click on the Accnew/Load button fram the System menu.

The HELF' accessory will be quickly loaded into memory. HELP is a
special accessory because it can be called up directly by pressing the
H L E P key. We've packed this program with a11 the information you ' 11
need about the accessor yprograms supplied with AMOS Basic, All you
need to do, is just follow the prompts which will be displayed on the
screen.

Direct mode

The Direct mode window can be entered from the editor by pressing the
ESCape key at any time. As a default,, the window is displayed in the
lower half of the screen, with the program screen in the background,,

If you run a program that changes the screen format,, displays
windows,, animates sprites etc, then all this screen data will remain
intact. So you can move the DIRECT window around or flip back to the
editor to make program changes without destroying the current program
screen. This DIRECT mode window is totally independent and is displayed
o n i t s o w n f r o n t 1 e v e 1 s c r e e n „

Whilst you're within direct mode you can type any line of AI10S Basic
you wish.. The only commands you cannot use Are loops and branch
instructions. You only have access to normal variables (as distinct
from the loca bari a tiles defined in a procedure).

Direct mode editor keys

ESCape Jump to the editor window
Return Executes the current line of commands
DELete Delete character under cursor/
Backspage Delete character to the left of the cursor
Left Arrow • Move cursor left

Right Arrow
Shift+Left
Shift+Right
Shift DELete
Shift BACK
Help

Fl to FiO

latest one entered., I

Hove
Skip
Skip

cursor
a word
a word

right
to the
to the

left
r i g h t

definitions to the

this system is always cleared when you
run one of your programs.

Deletes entire line.
Ditto
Displays the function key
direct window.

These keys remember the last 10 lines you've
entered from the direct mode. Fl displays the
the second to last, etc, The memory area used by

return to the editor window or

The menu window ..

There's a detailed explanation of all the options which are available
from the main menu window-

22

Default menu

This gives you various commands that allow you to operate the editor,
plus give you access to the block and search menus.

RUN
TEST
INDENT
BLOCKS MENU
SEARCH MENU
RUN OTHER-
EDIT OTHER

(Fl)
(F2)
(F3)
(F4)
(F5)
(F6)
(F7)

a nd i n d en t s t he listing,

OVERWRITE (F8)
FOLD/UNFOLD (F9)

Runs the current program in memory
Cheks the program syntax
Takes the current program
Displays the Blocks menu.
Displays the Search menu
Runs a program or accessory in memory
Edits a program which has previously installed into
memory using the "Load Other" or "Accnew/Load"„
Toggles between insert and overwrite -editing modes.
Takes a procedure definition and folds it away inside
y o u r p r o g r a m 1 i s t i n g „

Normally, it's possible to re--open a folded procedure by repeating
the process. Place the cursor over a folded procedure and click on
FOLD/UNFOLD. If you feel the need for extra security you can also call
up a special LOCK accessory from the AMOS Program disc, This will ask
for a code word, and will lock your procedures so that they can't be
s u b s e q u e n 11 y e x a m i n e c! f r o m AII0 S B a s i c, S :i. m p 1 y f o 1 d y o u r r e q u i r e d
proceduers and load FOLD.ACC using the LOAD OTHERS command,, Full •:
instructions are included with the utility.

The real beauty of this system is that it allows you to create whole
libraries of your routines on the disc, These can be loaded into memory
as a separate program (See LOAD O T H E R) . You can now cut out the routine
you need and copy them directly into your main program. So once you've
written a routine, cm can place it into a procedure and reuse it again
and again.

1f yo u're i n t en ding
con cider.

to use this sytem, there are several points to

* Whenever you fold or unfold a procedure a syntax check is made of
the entire program,, If an error occurs the opera ton i will not be
performed. So it's vital that you keep back-up copies of all your
procedures in Unfo

The system menu

LOAD
SAVE
SAVE AS
HERGE

MERGE ASCII (SHIFT+F5)

AC.NEW/LOAD
LOAD OTHERS
MEW OTHERS
MEW
QUIT

(SFT+F1 / AMIGA+L) Loads an AMOS Basic Program
(SFIi-F2 / AMIGA+S) Saves the current Basic: Program
(SFT+F3 /SFT+AM+S) Saves the prog with another name
(SHIFT+F4) Enters the chosen prog at the current

csrs position without erasing the current

program.

Merges an Ascii version of an AMOS Basic
program with the existing program in memory

(SHIFT+F6) Enters a new accessory set from the disc
(SHIFT+-F7) Loads a single accessory from the disc
(SHIFT+F8) Erases accessorie(s) from memory
(SHIFT+F9) Erases the current program from memory
(SHIFT+F10) Exits AMOS and returns control to the CLI

The blocks menu

BLOCK
BLOCK
BLOCK
BLOCK
BLOCK

BLOCK
BLOCK
BLOCK

SAVE

BLOCK

START
END
CUT
PASTE
MOVE

STORE
HIDE
SAVE

ASCII

PRINT

(CTRL
(CTRL
(CTRL
(CTRL
(CTRL

(CTRL
(CTRL
(CTRL

(CTRL

(CTRL

+

+
+
+

+
+
+

+

+

B/Fl)
E/F6)
C/F2)
P/F7)
M/F3)

S/F8)
H/F4)
F9)

F5)

Flu)

Sets the starting point for the current block
Defines the end of a block
Removes the selected block into memory
Pastes the block to the current csrs position
Move the block to the current cursor position
erasing the original version completely
Copies the block into memory.
D e s e 1 e c t s t h e b 1 o c k y o u ' v e h :i. g h I i q h t e d
Saves the current block on the disc as an
AMOS program
Stores your selected block on the disc: as
a normal text file.,
Outputs the selected block to the printer

T h e s e a r c h m e n u

FIND

FIND NEXT
FIND TOP

REPLACE

(ALT + Fl)

(ALT + F2)
(ALT + F3)

(ALT + F*i)

* Before a FIND

Enters a string of up to 32 chars and
searches through your text until a match is
found.
Searches for the next match you specified
Searches from the top of program the string
rather than starting from the crsr position
Activates REPLACE mode. The effect of this
c o m m a n d v a r i e s d e p e n d i n g w h e n :i. t' s u s e d :

* After a FIND

You'll now be asked to enter the replacement
string from the keyboard

If the search operation was succesful, the text and
the current cursor position will be swapped with the
replacement string. REPLACE will now jump to the next
occurrence of the search string.

REPLACE ALL. (ALT + F5)
LOW <> UP (ALT + F6)

OPEN ALL (ALT + F7)
CLOSE ALL. (ALT + F8)
SET TEXT B (ALT + F9)

SET TAB (ALT + F10)

Replaces ALL copies of a word in your prog.
Changes the case sensitivity used in search
commands
Opens all closed procedures in your program
CLoses all procedures in your program
SET TEXT BUFFER. Changes the » of chars
available to hold your listings.
Sets the number of chars which the crsr will
be moved when the user presses the TAB key,,

Keyboard macros

= KEY*~- (define a keyboard macro)

KEY* (n)^ command t> ' •
comffiand$):-KEY$(n)

KEY* assigns the contents of command* to function key number n. (1-20)
Keys from one to ten are accessed by pressing the function key in
conjuction with the left Amiga button. Similarly, numbers from eleven
onwards &re called with a right Amiga Fn combination.

Command* can be any string of text you wish., up to maximum of 20
characters. There Are two special characters which are directly
interpreted by this functions

' (Alt+Quote) Generates a Return code
" (single Quote) Encloses a comment. This is only displayed in your

key lists,. It's totally ignored by the macro routine.
Examples:

? Key* (I) : -,'..'.
Key* (2)--" Default" - , •
Alt+F2 ;

Key*(3)~:"'Comment print" •

In practice, this macro system can prove incredibly useful,, Klot only
can you speed up the process of entering you Basic programs, but you
can also define a list of standard inputs for your Basic programs.
These would be extremely effective in an adventure game., as can be seen
front the program EXAMPLE 3.2 in the MANUAL folder.

If you wish to generate a keypress which has no ASCII equivalent such
as up arrow,, you can optionally include a scan code in these macros.
This is achieved using the SCAN* function,,

=SCAN* (return a scan code for use with KEY*) " 29

x$--Scan$(n, L",m]) ;•',/•* ;

n is the scan code of a key to be used in one of your macro definitions,
m is an optional mask which sets the special keys such as CTRL, or Alt.
in the following format:

Bit Key Tested Motes :. •

0 Left SHIFT -
1 Right SHIFT
2 Caps Lock Either ON or OFF
3 CTRL. . •
4 Left ALT ,
5 Right ALT
6 Left AMIGA Commodore key on some keyboards
7 Right AMIGA

If a bit is set to a one, then the associated button is depressed in
your macro. Examples;

KEY*(4)~"Wheeei "-4-S
KEY$(5)="Page Up!"+Scan*(*4C,S00010000)

30
Conserving memory •

CLOSE WORKBENCH (closes the workbench) :

CLOSE WORKBENCH

Closes the workbench screen saving around 40K of memory for your
programs' Example:

Print Chip Free.Fast Free
Close Workbench
Print Chip Free,Fast Free

CLOSE WORKBENCH can be executed either from direct mode,, or inside on
of your Basic, programs, A Typical program line might be:

If Fast Free--0 Then Close Workbench

This would check for a memory expansion and close the Workbench if
extra memory was not available- ..

CLOSE EDITOR (close editor window)

CLOSE EDITOR -

C1o s e s t h e E d it o r wi ndo w w hi1e y our prog r a m i s r un ni n g, s a vi n g y o u m o r e
than 28K of memory. Furthermore, there's absolutely HO effect on your
program listings!

If there's not enough memory to reopen the window after your program
has finished, AMOS will simply erase your current display and revert
back to the standard DEFAULT screen. You'll now be able to effortlessly
jump back to the Editor with the ESCape key as normal,, What a terrific
1i t tie i ns t ru ct i on i

Inside accessories .

We'll now explore the general techniques required to write your own
accessory programs. These &r& really just specialised form of the
multiple programs we discussed a little earlier. As you would expect,
they can incorporate all the standard Basic instructions.

Accessories are displayed directly over your current program screen
and the music, sprite, or bob animations i\r& automatically removed from
the screen.

Your accessory should therefore check the dimensions and type of this
screen using the SCREEN HEIGHT., SCREEN WIDTH and SCREEN COLOUR commands
during its initialisation phase?,. If the current screen isn't
acceptable, you may be forced to open a new screen for the accessory
window or to erase the existing screens altogether with a DEFAULT
instruction»

Any memory banks used by your accessory are totally independent of

the main program. If it's necessary to change the banks from the

current program, you can call a special BGRAB command,.

BGRAB (grabs the banks used by the current program) 31

BGRAB b

BGRAB "borrows" a bank from the current program and copies it into the
same bank in your accessory. If this accessory bank already exists,, it
will be totally erased,, When the accessory returns to the editor, the
bank you have grabbed will be automatically returned to your main
program along with any changes, b is the number of a bank from 1 to 16.

Note that this instruction can only be used inside an accessory. If
you try to include it in normal program, you'll get an appropriate
arror message.

PRUN (run a program from memory)

PRUN "name" .

Executes a Basic program which has been previously installed in the
A fii i g a ' s m e m o r y. This c o m mane! c a n b e u s e d e i t h e r f r o m t h e d i r e c t rn o d e,
or within a program! In effect, PRUN is very similar to a standard
p r o c e d u r e c a 1.1, e x c e p t t h a t a n y b o b s, s p r i t e s o r m u s i c w i 11 b e t o t a 11 y
suspended.

Note that it's impossible to call the same program twice in the same
session. After you've called it once, any further attempts will ignored
completely. ' •"...•

~ P R 6 FIRST * (r e ad the f i rst prog ra m loaded i nt o memor y)

p*==PRG FIRST*

This returns the name of the first Basic: program installed in the
Amiga's memory,, It's used in conjunction with the PRG NEXT* command to
create a full list of all the currently available programs.

-PRG NEXT* (returns the next program installed in memory)

p*=PRG NEXT* -.'•; ,• .;•.•".• •

PRG NETX* is used after a PRG FIRST* command to page through all the
programs installed in Amiga's memory,, When the end of the list is
reached., a value of !l" will be returned by this function,, Example;

V N*=Prg First*
While N*<>"" . ' -

Print "Program" "nM*
N*=Prg Next*

Wend

=PSEL* (call program selector)

n*=PSELt("filter"[default*,titleIt,title2*]

PSFL* calls up a program selector which is indential to the one used by
the "Run Other, Edit Other, Load Others, and New Others commands.. This
can be used to select a program in the usual way. The name of this
program will be returned in n*. If the user has aborted from the
selector, n* will be set to an emptry string "".

"filter" sets the type of programs which will be listed by
instruction. Typical values &re°.

"*.ACC" List all the accessories in memory
"#.AMOS" Only displays the AMOS programs which have been

installed« . • ' . ' • " " } ' ,

"t.t" List all programs currently in memory. • :

For further details of the system see the MR command. :

default* holds the name of a program which will be

used as a default.
titlei$,title* Contains up to two lines of text which will be

displayed at the top of the selector.
See EXAMPLE 3.4 in the MANUAL folder for a demonstration. . '

The HELP accessory , • • •- 32

Whenever the HELP key is pressed from the Editor window, AMOS
automatically executes an accessory with the name HELP.ACC if it's
available. Unlike normal accessories, this is displayed directly over
the editor window. Special access is provided to the current word you
are editing. The address of this word is placed in an address register
and can be rea d u s i ng the AREG func t ion.

The editor control keys '

F i n a 11 y, he r e ' s a f u 11 1 i s t of t he va r i ous con t r o 1 keys an d ef f e c ts s

Special keys

ESC Takes you to direct mode

Ed iting keys -

Backspace Deletes the character to the immediate left of crsr,
DELete Deletes the character underneath the cursor
RETURN Tokenises the current line. If you move onto a line

and press RETURN it will split the line
SFT+BCKS/CTRL+Y Deletes current line
CTRL+U Undo. Return the last line when in overwrite mode.,
CTRL+Q Erase the rest of chars in the line from crsr position
CTRL+1 Insert a line at the current position

i he cursor arrows

Left,Right
Up,Down
SHIFT+Left,Right
SHIFT+up,down
CTRL+up,down
SHIFT+CTRL+up. ,dn
AMIGA+up
AMIGA+down
AMIGA+1eft,right

•loves cursor one space to the left/right
Moves cursor one line up/down
P o s i t i o n s the c u r s o r over t h e p r e v i o u s / n e x t w o r d
Move cursor to the top/bottom line of the current page
Displays the previous/next page of program
Move to start/end of text
Scrolls text up without moving the cursor
Scrolls text down under the cursor
Scroll program to the left/right on the current line

Program control .

AM1GA+S Saves your program under a new name
AMIGA+SHIFT+S " " current name
AMIGA+L Loads a program
AMIGA+P Pushes the current program into a mem and creates a new

program.
AMIGA+F Flips between two progs stored in memory
AMIGA+T ••. Displays next program in memory.

Cut and Paste 34

CTRL+B
CTRL+E
CTRL+C
CTRL+M
CTRL+S
CTRL+P
CTRL+H

Set the beginning of a block
Set end poin t of a block
Cut block
Block move
Saves the block in memory without erasing
Paste block at current cursor position
Hide block.

it first

Marks

CTRL+SHIFT+CO-9)
CTRL+(0--9)

Defines a marker at the present cursor position,
Jumps to a mark

Search/Replace

ALT+UP Arrow

ALT+DOWN Arrow

CTRL+F
CRTL+M
CTRL+R

Searches backwards through your program to the next
1 i n e w h i c h c o n t a :i. n s a lab e 1 o r p r o c e d u r e d e f i n i t :L o n »
Searches down through yur program to find the next
label or procedure definition
Find
Find Next :

Replace .

Tabs

TAB
SHIFT+TAB
CTRL+TAB

Move the
Move the
Sets the

entire line
line to the
TAB value

at the cursor to the nex-

previous Tab position
TAB pos,

4:: BASIC PRINCIPLES 35

This chapter discusses the ground rules used to construct AMOS Basic
programs and shows you how to improve your programming style with the
help of AMOS Basic procedures.

Variables

Variables are the names used to refer to storage locations inside a
computer. These locations hold the results of the calculations
performed in one of your programs.

The choise of variable names is entirely up to you, and can include
any string of letters or numbers. There Are only a couple of
restrictions. All variable names MUST begin with a letter and cannot
commence with an existing AMOS Basic instruction. However it is
perfectly permissible to use these keywords inside a name. So variables
such as VPRINT or SCORE are fine.

Variable names must be continuous, and may not contain embedded :
spaces. If a space is required,, it's a possible to substitute a "__"
charac tsr ins tead.

Here are some examples of illegal names. The illegal bits are
underlined to make things clearer.

WHILE*, 5C, MODERN**, TOAD ,

Types of variables

AMOS Basic allows you to use three different types of variables in your
programs.

Integers

Unlike most other Basics, AMOS initially assumes that all variables Are
integers,. Integers Are whole numbers such as 1,3 or 8, and &re ideal
for holding the values used in your games.

Since integer arithmetic is much faster than the normal floating
point operations, using integers in you programs can lead to dramatic
improvements in speed. Each integer is stored in four bytes and can
range from --147' 483'648 to +147'483 '648. Examples of integer variables!

A, NUMBER, SCORE, LIVES •' .'••--,•

Real numbers , " 3 6

In AMOS Basic these variables are always followed by a hash (•*)
character. Real numbers can hold fractional values such as 3.1 or 1.5.
They correspond directly to the standard variables used in most other
versions of Basic. Each real variable is stored in four bytes and can
range between 1E-14 and 1E-15. All values are accurate to a precision
of seven decimal diqits. Examples 5

P**, NUMBER!*, TESTS

String variables

String variables contain text rather than numbers™ They are
distinguished from normal variables by the $ character at the end. The
length'of your text can be anything from 0 to 65'500 characters.
Examples of string variables;

NAME*,, PATH*, ALIEN*

Giving a variable a value

Assigning a value to a variable is easy, Simply choose an appropriate
name and assign it to value using the "•=" statement,,

V A R = 1 0 ' •••..'..

This loads the variable VAR with a value of 10.

A*="Hello" ;

This assigns string "Hello" to a variable A*. •"'

Arrays

Any list of variables can be combined together in the form of an array,
Arrays are created using the DIM instruction.

DIM (dimension an array)

DIM yar(x ,y, z ,»,.„) . .

DIM defines a table of variables in your AMOS Basic program,, These
tables may have as manu dimensions as you want, but each dimension is
limited to a maximum of 65'000 elements,, Examples

Dim A$(1O),B(1O,,J,O),,C#(1O;,1O,I1O) .

In order to access an element in the array you simply type the array
name followed by the index numbers,, These numbers are separated by
commas and a.r& enclosed between round brackets ()..Note that the
element numbers of these arrays always start from zero. Examples

Dim ARRAY'10)
ARRAY(0)--i0:ARRAY(.1.)-™15 .
Print ARRAY(1)3 ARRAY(0)

(result; 15 1.0) • ' • '

Constants

Constants are simply numbers or strings which are assigned to a
variable or used in one of your calculations™ They Are called constants
because they don't charge during the course of your program. The
•following values are all constants'

1, 42? 3.141, "Hello"

As a default, all numeric constants are treated as integers., Any
floating point assignments to an integer variable are automatically
converted to a whole number before use. Examplesi

A=3.141:Print A . ' :
(result; 3) :

Print 19/2
(result;; 9)

Constants can also be input using binary or hexadecimal notation.
Binary numbers Are signified by preceding them with a *: character, and
hexadecimal numbers are denoted by a $ sign,. Here's number 2b5z

Decimals 255
Hexadecimal: *FF '. •
Binary:; $11111:1.11 , .

Mote that any numbers you type in AMOS Basic are automatically
converted to special internal format. When you list your program these
numbers are expanded back into their original form. Since AMOS Basic
prints all numbers in a standard way, this will often lead to minor
discrepancies between the number you entered and the number which is
displayed in your 1 i s t i ng . However t he va 1 ue of t he n umber w:i. 11 rema in
exactly the same. Floating point constants are distinguished from
i n t e g e r s b y a d e c i tn a 1 p o 1 n t. I f t h i s p o i n t i s n o t u s e d ,, t h e n u m b e r will
always be assumed to be an integer, even if this number occurs inside a
floating point expression. Take the following examples

For X=l To 10000

Next X . • • ' - .

Every time the expression in this program is evaluated, the "2" will be
laboriously converted into a real number. So this routine will be
inherently slower than the equivalent program belows . .

For X=l To 10000

Next X . : :

This program executes over 252 faster than the original one because the
constant is now stored directly in floating point format. You should
always remember to place a decimal oint after a floating point constant
even if it is a whole number. Incidentally, if you mix floating point
numbers and integers, the result will always be returned as a real
number. Examples

Print 19.0/2 • •". • \-
(results 9.5) - •'

Print 3.141+10 .
(result; .1.3.141) '•

Arithmetic operations • .'.. , 38

The following arithmetic operations can be used in a numeric
expressions

power
S * d i v i d e ^ n d m 1.11 t i p 1 y

MOD modulo operator (remainder of a division)

+ - plus and minus
AMD logical AND
Oft logical OR

1 ' ' NOT logical WOT
i

We've listed these operations in descending order of their priority.
This priority refers to the sequence in which the various sections of
an arithmetic expressions are evaluated.. Operations with the highest
priority are always calculated first.

INC (add 1 to an integer variable) •„. 39

INC var

INC adds 1 to an integer variable using a single 68000 instruction. It
is logically equivalent to the expression var==var+l, but faster. \
Example:

A=10sInc AsF'rint A \
(results 11) ;

DEC (subtract 1 from an integer variable)

DEC var

This instruction subtracts 1 from the integer variable \>&r. Example; . ..

A=2sDec AsF'rint A . ' '
(results 1)

ADD (fast integer addition) .

ADD v,exp [,base TO top]

The standard from of this instruction immediately adds the result of
the expression exp to the integer variable v. It's equivalent to the
line: V=V+EXP

The only significant difference between the two statements is that vi.
;

ADD performs around 40*;; faster. Note that, the variable v must be an
integer. Examples *

Tiiner=0 , .
For X=l To 1000 . -

Add T.,X
Next X
Print T,Timer

(results 500500 7)

The second version of ADD is a little more complicated. It is
effectively identical to the following code (but faster);

V=V+A •
If V<Base Then V=Top • '. • ...

Example; .

40

I r Dim A(10)
I For X=0 To 10;A(X)»X;Next X

V=0
\ r Repeat
] ; Add V,l,l To 10
\ Print A(V)
= Until V=100:rGm This is an infinite loop as V is always less
; than 10i

\ As you can see. ADD is ideal for handing circular or repetitive loops

} in your games.

String operations

Like most versions of Basic, AMOS will happily allow you to add two
strings together,.

A*="AH0S"+" Basic"
Print A$ • •

(results AMOS Basic) . /

But AMOS also lets you perform subtraction as well. This operation
works by removing all occurrences of the second string from the first,

Print "AMOS BASIC"-"AM0" '
(result; S BASIC)

Comparisons between two strings are performed on a character by
character basis using the Ascii values of the appropriate letters:;

"AA"<"BB"
"Filename"3*" Filename"
" X & " > " X H " • - •••

"HELLO"<" hello" ' -'• . •

Parameters ; • 41

The values you enter into an AMOS Basic instruction are known as
parameters, i.e

Inc N
A d d A . , 1 0 . " " ' • . • • - . ' . ; . ; ' • '

I n k 1 , 2 , , 3 - • ! • - . • ;

The parameters in the above instructions are N,A,10,1,2 and 3
respectively. Occasionally, some of the parameters of a command can be
ommitted from an instruction. In this case., any unused values will
autoinatically be assigned a number by default., Examples

I n k 5 , , * • • ; • . . . • . . ' . ' '

This changes the ink colour without affecting either the paper or
outline colours.

Line numbers and labels

Labels

Label* arp just a convenient way of marking a point in your AMUb Basic
nroqrams. They consist' of a string of characters formed using the same
rules as AMOS variables. Labels should always be placed at the start of
the line, and must be followed immediately by a »:" character., There
should be no spaces between the label and the colon., Examples

TESTLABEL: , • •
Print "Hi There!" . ~
Goto TESTLABEL . •

This program can be aborted by pressing CTRL+C .

Procedures

Procedures allow you to concentrate your efforts on just one problem at
a time without the distractions provided by the rest of your program.
Once you've written your procedures you can then quickly combine them
in your finished program, AMOS procedures are totally independent
program modules which can have their own program lines,, variables,, and
even data statements.

PROCEDURE (create an All OS Basic procedure)

Procedure MA PI EC parameter list]

End Proc[Expression3

This defines an AMOS Basic procedure called NAME. NAME is a string of
characters which identify the procedure., It is constructed in exactly
the same way as a normal Basic variable. Note that it's perfectly
acceptable t ouse identical names for procedures, variables and labels.
AMOS will automatically work out which object you are referring to from
the context of the liDe-
procedures are similar to the GOSUB commands found in earlier J

versions of Basic™ Here's an example of a simple AMOS procedure;

Procedure ANSWER ..•-•.
Print "Forty-Two!" ;.

End Proc

See how the procedure has been terminated with an END PROC statement.
You should also note that the Procedure and the End Proc directives &r&
both placed on their own separate lines. This is compulsory,,

If you type the previous procedure into AMOS Basic as it stands, and
a1tempt to run i t ? n othin g wi11 hap pen„ That's be cause you haven't
actually called the new procedure from your Basic Program,, This can be
achieved by simply entering its name at the appropriate point in the
program. As an example, enter the following line at the start of the
program and run it to see the result of the procedure,,

ANSWER

IMPORTANT! When you are using several procedures on the same line, it's
A d v i s a b l e -fc cs i* rJ <J i* rt e> * h t- ̂ * <ii p A <- c? -a +. d h G? e-> n cl t:> -f <= ̂ ;r i> ^ i: .--* i: ts- m <•:>,-, i:_ .. T i ̂ i -=a w :!_ !t 1

avoid the risk of the procedure being confused with a label. For
examples

TEST s TEST : TEST
TEST:TEST:TEST

Performs the test three times.
Defines Label TEST and executes test 2x

Alternatively, you can preclude your Procedure calls with a Proc

statement like so:

Proc ANSWER

Example: ' • .

Proc ANSWER
Procedure ANSWER

Print "Forty-Two"
End Proc '• . •

If you run this program again, the procedure will be entered,, and the
answer will be pr in ted ou t on t he screen. A11 houg h the procedure
definition is positioned at the end of the program, it's possible to ,
place it absolutely anywhere,, Whenever AMOS encouters a Procedure
statement, it installs the procedure and immediately jumps to the final
End Proc. This means there is no danger of accidentally executing your
procedure by mistake. Once you've created a procedure,, and tested it to
your satisfaction, you can suppress it in your listings using the fold
option from the main menu.

T h e s e f o 1 d i n q p r o c e cl u r e s -educe the apparent complexity of your
listings and allow you to debug large programs without the distractions
of unimportant details. You can restore your procedure listings to the
screen at any time by selecting the 'unfold menu option'.

Local a n d g1o ba 1 v a ri a b1es

All the variables you define inside your procedures are independent of
any other variables used in your program,. These variables Are said to
be "local" to your particular procedure. Here's an example which
illustrates this::

TEST
Print A,,B
Procedure
Print A,B
End Proc

TEST

It should be apparent that the names A and B refer to completely
different variable depending on whether they Are used inside or outside
the procedure TEST. The variables which occur outside
"global" and cannot be accessed from within it. Let's
examples

a procedure are
take an other-

A(iOO)
For V=l To 100s A(V)=V:Wext V
TEST _FLAG=1
APRINT
End
Procedure APRINT

If TE3T._FLAG=i
For P=l To 100

Print A(P)
Next p

E n dif

End Pros::

This program may look pretty harness but it contains two fatal errors.

Firstly, the value of TESTJ1.AG inside the procedure will always have

a valup oiF zero. So the loop~~betwe.en the IF and the ENDIF will never be
performed. That's because the version of TEST FLAG within the procedure

is completely separate from the copy defined in the main program. Like

all variables, it's automatically assigned to zero the fist time it's

used.,

Furthermore, the program won't even run! Since the global array a()
has been defined outside ARPINT, AMOS Basic will immediately report an
"array not dimensioned" error at the lines

Print A(P) , ' , "

This type of error is extremely easy tomake. So it's vital that you
treat procedures as separate prog rams wi th thei r own independen t set of
variables and instrcutions.,

There are a couple of extensions'to this system which make it easy
for you to transfer information between a procedure and your main
program. Once you're familiar with these commands you'll have few
problems in using procedures successfully in your programs.

Parameters and procedures : . 44

One possibility is to include a list of "parameter definitions11 in your
procedure. This creates a group of local variables which can be loaded
directly from the main program- Here's an examples

Procedure HELLOCWAilE*] • ,,. - ;
Print "Hello "jNAME* ;

End Proc

The value to be loaded into NAME* is entered between square brackets as
part of the procedure call. So the HELLO procedure could be performed
in the following ways:

Rem Loads Kl$ into NAME* and enters procedure
. Input "What's your name";n*
HELLOCN*]
HELLOC"Stephen"] . .

As you can see, the parameter system is general purpose and works
equally well with either variables or constants,, Only the type of the
variables Are significant.

This process can be used to transfer integer,, real or string
variables. However you cannot pass entire Arrays with this function. If
you want to enter several parameters you should separate your variables
using commas. For examples

Procedure POWER[A,B]
Procudure MERGE[A*,B*.,C*3 ' •

These procedures might by called using lines like: ' .

POWER!! 10,3] „. •
e" , " T W D " , "Three" :i ' .'.•'•

45
Shared variables

Another way of passing data between a procedure and the main program is

to use the SHARED instruction.

SHARED (defina a list of global variables)

SHARED variable list ,

SHAFTED is placed inside a procedure definition and takes a list of AMOS
Basic variables separated by commas. These variables Are now treated as
global variables., and can be accessed directly from the main program.
Any arrays which you declare in this way should of course have been
previously diiiiensioned in your main program. Examples

TEST
Print A?B
Procudure Test

Shared A,,B

End Proc

TEST can now read and write information to the global variables A and
B. If you want to share an array you should define it like sos

Shared A() ,B«() ,C* () s Rem Share ar rays A,Bit and C*

GLOBAL (declare a list of global variables
from the main program)

GLOBAL variable list

When you're writing a large prog rani,, it's commonplace for a number of
procedures to share the same set of. global variables. This provides a
simple method of transferring large amounts of information between your
various procedures. In order to simplify this process, we've included a
single command which can be used directly in your main program. GLOBAL
defines a list variables which can be accessed anywhere inside your
Basic program, without the need for an explicit SHARED statement in
your procedure. "'"••."',..

Returning values from a procedure • ..-• 46

If a procedure needs to return a value which is only local to itself,
it must use the following command so that it can inform the calling
PROCEDURE command where to find the local variable

PARAH (return a parameter from a procedure)

PARAM

The PARAM functions provide you with a simple way of returning a result
from a procedure. They take the result, of an optional expression in the
END PROC statement, and return it in one of the variables PARAM,

PAR Alitf, or PARAfl$ d spend ing on i t s type,, Examples

MERGE_.STRIWGS["Afflos"," " .."Basic11:!
Print PARAM* , ;

Procedure HERGE_STRINBS[At,B*,Ct] ,
Print A*,B*,Ct

End F'roc

Nntp that END PROC may only return a single parameter in this way. The
PARA11 functions will always contain the result of the most recently
executed procedure. Here's another example, this time showing the use
of the PARAI18 function.

CUBE[3,0]
Print Param#
Procedure CUBE[A$T|

Ctt=CUBE8*CUBEtt*CUBEtt
EndProc[Ctt]

Leaving a procedure 4/

POP F'ROC (leave a procedure immediately)

POP PROC

Normally, procedures will only return to the main program when the END
PROC instruction is reached. Sometimes., however,, you need to exit a
procedure in a hurry. IN this case you can use the POP PROC function to
e x i t i m in e d i a t e 1 y.

Local DATA statements ,

Any data statements defined inside one of your procedures are held
completely separately from those in the main program. This means each
procedure can have its own individual data areas.

Hints and tips

Here are a few guidelines which will help you make the most out of your
AMOS Basic procedures:

* It's perfectly legal for a proceduces to call itself, but this
recursion is limited by the amount of space used to store the local
variables. If your program runs out of memory you'll get an
a p p r o p r i a t e e r r o r „

* All local variables are automatically discarded after the procedure
has finished executing.

Memory banks

AMOS Basic includes a number of powerful facilities for manipulating
sprites,, bobs and music. The data required by these functions needs to
b e> • s t o r e d a l o n g w i t h t h e=> B i\ *=i :i c: p r r t g r a m .. A M O S> B «i *s i c; u ̂ e? is V* ?.> p £? c ;i. ̂ it, s <;? "t

of 15 sections of memory for this purpose called "banks".

h bank is referred to by a unique number ranging from 1 to 15.

Many'of these banks can be used for all types of data, but some are

dpdirAtPd solely to one sort of information such as sprite definitions.

All sprite images are stored in bank 1. They can be loaded into memory

using a line like:

Load "AMOS DATAsSprites/Or.topus.abk"

There are two different forms of memory banks Permanent and temprorary.
Permanent banks only need to be defined once, and ans subsequently
saved along with your program automatically. Temporary banks are much
more volatile and are reinitialized every time a program is run.
Furthermore, unlike permanent banks,, temporary banks can be erased from
memory using the CLEAR command.

Types of memory bank .

AMOS Basic supports the following types of memory banks

Class Stores Restrictions Type

Sprites
Icons
Music
Amal
Samples
Menu
Chip
Chip
Fast
Fast

work
data
work
data

Sprite or bob definitions
Holds icon definitions-
Contains sound track data
Used for AMAL data
The Sample Data
Stores MENU def in it i on
Temporury workspace
Permanent workspace
Ternporary workspace
P e r m a n e n t w o r k s p a c e

Only bank 1
Only bank 2
Only bank 3
Only bank 4
banks 1-15
banks 1-15
banks 1-15
banks 1-15
banks 1-15
banks 1-15

Permanent
Permanent
Permanent
Permanent
Permanent
Permanent
Temporary
Permanent
Temporary
Permanent

RESERVE (reserve a bank) *

RESERVE AS type,bank,length - \

The banks used by your sprites or bobs are allocated automatically by
AMOS. The RESERVE command allows you to create any other banks which
you might require. Each different type of bank has its own unique
version of the RESERVE instruction.

RESERVE AS WORK bankno, length •''

Reserves "length" bytes for use as a temporary workspace. Whenever
possible this memory area will be allocated using fast memory, so you
shoudn't call this command in conjunction with instructions which need
to ace:ess to Amiqa 's b 1 i 11er chi p.

RESERCE AS CHIP WORK bankno,length •

Allocates a workspace of size "length" using chip ram. You can check
whether there's enough chip ram available with the CHIP FREE function.

RESERCE AS CHIP DATA bankno,length

Reserves "length" bytes of memory from chip ram. This bank will be
automatically saved along with your All OS programs..

BnnK may be an;r number between 3. ond IS. Since banks i -to 5 «i-«

normally reserved by the system,, it's wisest to leave them alone. Note
that the only limit to the length of a bank is the amount of available

49

memory.

LISTBANK (list the banks in use) .. .

LTSTBANK lists the numbers of the banks currently reserved by a

program, along with their location and size. The listing is produced in

the following formats

Number Type Start Length :

Normally the length of a bank is returned in bytes, but in case of
sprites and icons the value represents the total number of linages in
the bank instead. The reason for this is that the storage of each image
can be anywhere in the Amiga's memory, the bank is therefore not a
continuous block of memory. So don't BSAVE a sprite bank,, simply use
SAVE "filename.abk" . , . ••

Deleting banks . 5 0

During the course of a program you may need to clear some banks from
the memory so as to load in additional data. Sprites may need to change
for a new part of a game or a special piece of music is required to be
played. The ERASE command gives you quick control for data deletion,,

ERASE (delete a bank)

ERASE b

ERASE deletes the contents of a memory bank. The bank number b can
range from 1 to 15. Note that any memory used by this bank is
subsequently freed for use by your program.

Bank parameter functions

If you want to have direct access to the bank data using commands such
as poke, doke and loke then use these commands to find a bank's address
in memory and its size.

=START (get the start address of a bank)

s=START(b)

This function returns the start address of bank uninber b. Once it's
been removed, the location of the bank will never subsequently change,
So the result of this function will remain fixed for the lifetime of
t he ban k. Ex am pies

Reserve As Work 3,2000
Print Start(3)

^LENGTH (Get the length of a bank)

l=length(b) ' ' '

The LENGTH function returns the length in bytes of bank number b. If

the bank contains sprites then the number of sprites or icons will be

returned instead. A value of zero indicates that bank b does not exist.

Exaple:

Reserve as work 6,1000

Print Length(6)
Erase 6 .
Print Length(6)

Loading and saving banks - 51

Some programs will require many banks of information, a good example is
an adventure. This would need to load various graphics and sounds for
the different locations within the games domain,. An Amiga 500 would
have great difficulty holding all this data at once and so it's best to
simply load the data at the appropriate time of use.

LOAD (Load one or more banks)

LOAD "filename"[,n]

The effect of this command varies depending on the type of file you a,r<s
loading. If the file holds several banks, then ALL current memory banks
will be erased before the new banks are loaded from the disc. However
if you're loading just a single bank,, only this bank will replaced. The
optional destination point specifies the bank which is to be loaded
with your data,, If it's omitted, then the data will be loaded into the
bank from which it was originally saved.

Sprite banks are treated slightly differently. In this case the
parameter n toggles between two separate loading modes. If n is omitted
or is assigned a value of zero, the current bank will completely
o v e r w r i 11 e n b y t h e n e w s p r i t e s., A n y o t h e r v a 1 u e f o r n f o r c e s the n e w
sprites to be ^appended* to this bank. This allows you to combine
several sprite files into the same program. Examples

LOAD "Ai10S....DATA;Sprites/0ctopus.abk"

SAVE (E>ave one or more banks onto the disc)

S A V E " f i l e n a m i " [? n] • • • ' . . . ;

The SAVE command saves your memory banks onto the disc, There Are two
p o s s i b 1 e f o r m a t s s

SAVE "filename.ABK"

This saves *ALL* currently defined banks into a single file onto your
d i s c.

SAVE "filename.ABK",n

The expanded form just saves memory bank number n. One should also be
sure to use the extension ABK at the end of the filename as this will
ens;ure you can identify that the file contains one or more? memory
banks.

BSAVE (Save an'unformatted block
in binary format)

BSAVE file*, start TO end

The memory stored between "start" and "end" is saved on the disc in
file*. This data is saved with no special formatting.. Examples

BSAVE "Test" ,.Starts?) TO Start (7)+Length(7)

The above example saves the data in memory bank 7 to disc. The
difference between this file and a saved file as a normal bank is that
SAVE writes out a special blank header that contains information
concerning the bank,, This header is not present with a BSAVED file so
it cannot be loaded using LOAD.
WARNING; The sprites an icon banks are not stored as one chunk of
memory. Each object can reside anywhere in memory. Because AMOS uses
this flexible system of data storage you simply can't save the memory
bank using BSAVE.

BLOAD (load binary information into '••' - 52
a specified address or bank)

BLOAD file*, addr . ',

The BLOAD command loads a file of binary data into memory., It does not
alter the incoming information in any way,, There &re two forms of this
function.

B L O A D f i l e * , a d d r • \ - • -' • '/ •

File* will be loaded from the disc into the address addr.

BLOAD file*., bank

File* will be loaded into bank. This bank must have been previously
reserved, otherwise an error will be generated. Also be sure not to
load a file that is larger than the reserved bank, otherwise it will
over run the bank and start corrputing other areas of memory!

Memory fragmentation

Sometimes, after a busy editing session, you may get an "Out of Memory"
error, even though the information line implie

Finding space for your variables

A-. a default, all variables are stored in a memory Are A of exactly 8 k
in length,, Although this may seem incredibly meagre, it's easily
capable of holding around 2 pages of normal text, or 2000 numbers.
We've intentionally set it as small as possible so as to maximize the
amount of space available for your screens and memory banks.

SET BUFFER (set the size of the variable area)

SET BUFFER n

Sets the size of the variable area in your current program to "n"
kilobytes. This must be the FIRST instruction in your program
(excluding Rems). Otherwise you'll get an appropriate error message,,
For an example of this feature see EXAMPLE 4..1 in the MANUAL folder.

SET BUFFER should be used in your program whenever you get an "out of
string space error". Increase the value in 5k increments until the
error disappears™ If y o u r u n o u t o f m e m o r y d u r i n q t h i s p r a c e s s,, y o u ' 11
propably need to reduce the requirements of your program in some way.
See the CLOSE WORKBENCH and CLOSE EDITOR commands for more details.

; =FREE (return the amount of free mem,, in the variable area)
I •

! f=FREE

FREE returns the number of bytes which Are currently available to hold
your variables. This value can be increased as required using the
previous SET BUFFER command.

Whenever FREE is called, the variable area is reorganized to provide
the maximum space for your variables. This process is known as "garbage
collection", and is normally performed automatically.

• Due to the power of AMOS Basic:,, the entire procedure is usually
accomplished practically instantaneously. But if your variable area is
bery large and you're using a lot of strings., the garbage collection
routine might take several seconds to complete. Conceivably, this could
lead to a unexpected delay in the execution of your programs. Since the
garbage collection is totally essential, you may need to add an
explicit call to the FREE command when it will cause the least amount
of harm in your program. : .

5s STRING FUNCTIONS 54

•~L.EFT$:= (return the leftmost characters of a string)

d*=LEFT*(s*,n) ;• • . , ' : • '

This instruction works like in nearly any Basic language (for example,
AmiqaBasic),, Examples

B$="Hello! This is Ronnie!" , - ... ' \, '
U=Left*(B*,9) • . . '. . • ': •"
P r i n t L * " . ' ' . - • . , ' ' .

(results Hello! Th) , : ; ~ / ,

=RIGHT$= (return the rightmost character of a string) •

d * = R I G H T * (s * , n) •• • '• •• •:,-••• '' t '-' " \ ..

Same as the LEFT* -instruction,, but takes the rightmost characters.

Print Right*("AMOS Basic".,5) • . •'..•"•

(result; Basic) . • -,

: --HIM- (return a string of characters from within a string) " 55

d * = M I D * (s * J p , n) ... ; ''"'''• ' -• . . ' • , . • ' • • '

The MID* function returns the middle section of the string held in s$.
p denotes the offset of characters to the start of this substring;, and
n holds the number of characters to be fetched. If a value of "n" is
not specified in the instruction then the characters will be read right
up to the end of your string. Examples

Print Hid*("AMOS Basic",A) L
(r e s u l t : B a s i c) •: • ...

, ' " • . ' • • . ' . - " • • • , •

There is also a I1ID$ instructions .'.-".".

This version of H I M loads "n" characters into d$ starting from -:

position p+i in s*. If a value of n is not specified directly then
characters will be replaced up to the end of the source string s*. This
kind of instruction is also possible when using !...EFT$ and RIGHT*.
Here's an examples . .

A$--"AMOS ****#"

Print A$
(results AMOS Magic)

=IWSTR (search for occurrences of a 56

string within another string)

f=INSTR(d*,s$ up])

IMSTR allows you to search for all occurrences of one string inside
another. It is often used in adventure games to split a complete line
of text into its individual commands,, There are two possible formats of
the INSTR function.

f=INSTR(d$?s$) •

This searches for the first occurrence of s$ in d$. If the string is
found then its position will be returned directly,, otherwise the result
will be set to zero. Examples: • 4 •. :

Print Instr("Ai10S BASIC",, "AMOS")
(result: 1)

Print InstrC'AMOS BASIC","S")
(results 4)

Print Instr("AMOS BASIC","AMIGA")
(result; 0) , • .

Do , '
Input "String to be searched";D* •
Input "String to be found";S$
X=Instr(D*,S$) ' V
If X=0 Then Print S$;" Wot found" . t

If XOO Then Print S*;" Found at position !';X
L o o p . . •''..-

Normally the search will commence from the first character in your text
string (dt). The secant version of INSTR lets you. test a specific
section in the string at a time.

p is now the position of the beginning of your search. All characters
&re numbered from the left to right starting from zero. Therefore p
ranges from 0 to LEKi(st). Examples

Print InstrC'AMOS BASIC", "S" ,5) . ' , •• :.
(result: 8) - • . .:

=UPPER* (convert a string of text to upper case) 5?

s*=UPPER*(n*) : '":'. .. . • ' • • • :

This function converts the string in n$ into upper case (capitals) and
p 1 a c e s t h e r e s u 11 i n t o s $ „ E x a m p 1 e s

Print Upperf("AmOs BaSic")
(results AMOS BASIC) . ,

=LOWER$ (convert a string to lower case) ,

s*=L0UER*(n$) .

LOWER* tr«nslat«« «i .1. t,-,.» = h.»„• ~ .=-t „ -«. L „ „* :!.„+.= ICWOK- ,~aeG_ This is

especially useful in adventure games., as you can convert all the user's
i n p i.i t into a s t a n d a r d f o r m a t w h i c h i s m u c h e a s i e r t o i n t e r p r e t.

I Example:

In put "Con tinue (Yes/No)";ANSWER*
ANStoT£R*=Lower*(ANSWER*) 5 If ANSWER*="no" Then Edit
Print "Continuing with your prog.,.."

=FLIP* (invert a string) .
. ' - • - . ;

f * - F L I P * (n *) I : . ..'• : '-•'".' ••
s . . • • • • ' . • •

FLIP* simply reverses the order of the characters held in n*.

. • • • • • • . ' • . ' • . . • • " . • •

--SPACE* (space out. a string) ./''''-.,'•

s * = S P A C E * (n) [: , :••

Generates a string of n spaces and places them into s*. Examples

Print "Twenty" ; Space*(20)5 "spaces" • • ,

=STRIN6* (create a string full of a*) . 58

s*=STRING*(a$,n) ' :

STRING* returns a string with n copies of the first character in ais

Print String*("The cat sat on the mat", 1.0)
(results TTTTTTTTTT) ; ,7

-CHR* (return Ascii character) . . ,-

s*~CHR*(n) • ' : '" ... • , '

Creates a string containing a single character with Ascii code n„

~ASC (get Ascii code of a character) ,' :,

c==ASC(a*) ; - . ;

ASC supplies you with the internal Ascii code of the first character in
the string a$s :; •-. ., -.•» ,

Print Asc("B") . ' -
(r e s u l t s 6 6) •.,--' ; •- ••.'. ' •. „ l • v

=LEN (returns the number of characters stored in a*)

This way you. can get the length of a strings

Print Len("12345678")
(results 8) :

5

-=VAL (convert a string to number)

v=VAL(x$) " ' .

VAL converts a list of decimal digits stored in x$ into a number. If

this process fails for some reason, a value of zero will be returned

instead,, Examples

X=Val("1234):Print X , " ,

(results 1234) -

=STR* (convert a number to a string)

s*=STR*(n) • •. . : : v

STR$ converts an integer variable into a string,, This can be "jery
useful because some functions., such as CENTRE, do not allow you to
enter numbers as a parameter. Example;

Centre "Memory left is "+Str*(Chip Free)*" Bytes."

Do not confuse STR$ with STRING*. , . > '

Array options

SORT (sort all elements in an array) •',';...

SORT a(0) ;
SORT a#(0) ; The SORT instruction arranges the contents of any
SORT a*(0) •! array into ascending order. This array can contain

; either strings,, integers,, or floating point numbers.
The a$(0) parameter specifies the starting point of your table. It must
always be set to the first item in the array (item number 0). Example:

Dim A(25) . .
P = : 0 ' • , • ••-:•' ••'•'. ' ' , • •:'•

Repeat • ,
Input "Input a number (0 to stop)";A(P)
I n c P ' ' . •:•";...-

Until A(P-1)=O Or P>25 '.: ; :'
Sort A(0) ,,-, - •••

F o r 1 = 0 t o P - l ... ,-'-•.'
Print A(I)

Kiext , . * ; . . , :

MATCH (search an a.rt~&y) • .. , - . - ' .. ' 60

r=MATCH(t(O),s)
r=MATCH(t«(O),s«) MATCH searches through a sorted array for the
r=MATCH(t*(0),s$) value s. If this is succesfully found then r

will be negative., Taking the absolute value of

this figure? will provide you with the item which came closest to your

original search parameter,,

Wote that only arrays with a single dimension can be checked in this

way. You'll also need to sort the arr&y with SORT before calling this

function« Examples

' ' •

R e a d N * :"•

Dim Dt(N)
F o r 1 = 1 t o N ;

 : • • v * - ,:.;'• '. ' ' • • • - • • - •

R e a d D t (I) ; \; ;'; ' • • • • •

N e x t I • "'"••': , •' ,

Sort D$(0) = : " .

' • . D o ' • • • ' • • • • • • • • • ' • • • - • ^ - - ' " '

Input A$ ' • • : ••'•'

If A$ = "L" .-•,'••' : ••

For 1 = 1 to NsPrint D$(I):Next I -. ': .' .. .
Else • ••• "••• '•-: -

P0S=!1atch(I)$(0),A$)
If P0S>0 Then Print "Found" ,,D$(PQS);" In Record ";POS
If P0S<0 And Abs(POS)<=N Then Print A*,"Not Found. Closest

• ; To %D$(Abs(P0S))
If P0S<0 And Abs(POS)>N Then Print A$,, "Not Found. Closest

To ";D$(N)
E n d i f I ' •••:- .

Loop
Data 10,"Adams",."Asimov","Shaw","Heinlien","ZeIazny","Foster"
Data "Niven","Harrison","Pratchet%"D:Lckson" ' .. :

Note that MATCH could be used in conjunction with the 1KISTR function to
provide a powerful parser routine. This might be used to interpret the
instructions you entered in an adventure game.

6:GRAPHICS

AMOS Basic provides you with everything you need to generate some
amazing graphics. There's a comprehensive set of commands for drawing
rectangles, circles and polygons,, As you would expect from the Amiga,
all operations Are performed practically instantaneously. But even here
AMOS Basic has a trick or two up its sleeve.

The AMOS graphical functions work equally well in all the Amiga's
graphics modes INCLUDING hold and modify mode (HAM). It's therefore
possible to create breathtaking HAM pictures directly within AIIOS
Basic!

Furthermore, you're not just limited to the visible screen. If you've
created an extra large playing area, you'll be able to access every
part of your display using the standard drawing routines. So it's easy
to generate the scrolling backgrounds required by arcade games such as
Defender. .

Colours

The Amiga allows you to display up to 64 colours on the screen at a
time. These colours can be selected using the INK,,COLOUR and PALETTE
commands.

INK (set colour used by drawing operations)

INK col[, paper][,border] , . . • '

"col" specifies the colour which is to be used for all subsequent
drawing operations. The colour of every point on the screen is taken
from one of 32 different colour registers. These registers can be
individually set with a colour value chosen from a palette of 4096
colours.

Although the Amiga only provides you with 32 actual color registers,,
AMOS lets you use colour numbers ranging from 0 to 63. This allows you
to make full use of the colours available from the Half-Bright and HAH
modes respectively. A detailed explanation of these modes can be found
in the Screens chapter. -

The "paper" colour sets the background colour fill patterns generated
by the SET PATTERN command,, " , ;

The "border" colour selects an outline colour for your bars and
polygons., This option can be activated using the SET PAINT command like
sos

Set pattern 0 : Set paint 1 ..
Repeat .

C=Rnd(i6):Ink 16-C,0,C .
X=Rnd(320)--20sY=Rnd(200)-20:S=Rnd(i00)+10
Bar X,Y to X+S,Y+S ; ' :

Until Mouse Key

ki<r, 4 <* 4- K A 4- .^ r* ^ f, -f -r. K G* m -^ >•- -* fn t=- +. t?> f <J: «: i-> 1 ,. r> --A r> «* f .^ r\ ri h\<n i~ <-i ^ K- ;. m «A ̂ b e> <r, m ri. -(- •!• <* d

Simply include "empty" commas at the appropriate places in the
instruction. For examples

Ink ,,5 : Rem Just sets the border colour

COLOUR (assign a colour to an index) 62

COLOUR index,tRGB -'• - ,
• • • . - . , . • • /

The COLOUR instruction allows to assign a colour to each of the Amiga's

32 colour registers,

"Index" is the number of the colour you wish to change,, and can range
from 0-31. As you may know, any colour can be created by (nixing
specific amounts of the primary colours Red, Green and Blue, The shade
of your colour is completely determined by the relative intensities of
the three components .

The expression $R6B consists of three digits from 0 to F. Each
component sets the strength of one of the primary colours, Red (R),
Green (G) or Blue (E«). The size of the components is directly
proportional to the brightness of the associated colour„ So the higher
values, the brighter the eventual colour. • ,

H e x D i g i t 0 1 2 3 4 5 6 7 8 9 A B C D E F
D e c i m a l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HAM and Extra Half-Bright modes use these indices siighty differently.
See Chapter 9 for more details.

-COLOUR (read the colour assignment)

c=C0L0UR(index) • ,

The COLOUR function takes an index number from 0 to 31S and returns the
coour va1ue whi ch has been prev i ous1y ass igned to i t«
"Index" is simply the colour number whose shade you wish to

determine. You can use this function to produce a list, of the current
colour settings of your Amiga like so:

For C=0 To 15 . . .• ' ' ; •..
Print Hex$(Colour(C),,3) / . ..• «:

Next C '., • ; .

PALETTE (set the current screen colours) . 63

PALETTE list of colours • •. -

The PALETTE instruction is really just a rather more powerful version
of COLOUR, Instead of loading the colour values one at a time, the
PALETTE command allows you to install a whole new palette of colours in
a single statement. , , •

However you don't have to set all the colours in the palette at
once. Any combination of colours can be loaded individually ;

PALETTE * 1 6 6 , * 5 O O , t 3 6 d r. F5o,m S«,t« j ... s-t I h ,-<.„»> <::<:•, 1 o'•«

You can also change selected colours in the middle of your list 5

PALETTE $200,,$400 s Rem Change colours 0 and 2

It's important to realise that only the colours in the palette which
are specifically set by this command will actually be changed. All
other colours will retain their original values. Here Ara some
examples:

Palette O,*FOOS*OFO
Palette 0,$770 . ..
Palette 0,,f>66
Palette 0?*l?*2,$3?*a?*5,$6.!*?|1*8,,$9,,$A,1$B,,$CJ$D,,$E!1$F ' - .

At the start of your program the colour palette is automatically loaded
using a list of default color values. These settings can be adjusted
using a simple option from the AMOS configuration program.

This command can also he used to set the colours used by the
Half-Bright and HAM modes. These extend the existing colour palette to
generate dozends of extra colours on the screen™ See chapter 10...

.ine drawing commands

GR LOCATE (position graphics cursor)

GR Locate x ,,y .-.••'••.

This sets the position of the graphics cursor to screen coordinates
x,y. The graphics cursor is used as the default starting point for most
drawing operations. So if you omit the coordinates from commands such
as PLOT or CIRCLE, the objects will be drawn at the current cursor
position. For example:;

Gr Locate 10., 10 :: Plot , •. - \
Gr Locate 100,100 s Circle ,,100 ,']\

=XGR (return x coordinate of gfx cursor) •- 64
=YGR (return y coordinate of gfx cursor)

x=XGR . . • • ' ' • • ' • • : •"•- V : ,

y = Y G R • . . ' " • = • • • • • • / •..' '

These functions return the present coordinates of the graphics cursor;

C i r c l e 1 0 , 1 0 0 , , .1.00 r ' '••••'• "•• :.

Print Xgr., Yqr

PLOT (plot a single point)

PLOT x?y [,cl .- . - :

The PLOT command is the simplest drawing function provided by AMOS
& ---i = i -L t T 4- •-. 1 TJ 1- •=- -v i-i - * -'• i-i 4- a. -I- ,- 1 " 4- • i -vi i

- - - -• - - ••- | -• <• J i -* '••*• p '-> -' ' i ^. -=̂ c. <-_ <_* t_i i <M 3. i * A t e* *s >c ., >- i.i. *s- n !-. fj en a X rs tx i- /:•_: .. I V; o n (?• t.»j n. n |<

co 1 oiir wi 11 now be used :i. n a 11 subsequen t d rawi ("sg o p e r a t ions . .

I f t h e c o 1 o u r " <::" i s o m i 11 e d f r o m t h i s i n s t r u c 11 o n ;! t h e p o :i. n t w i 11 b e

plotted in the current colour. For example:

Curs Off: Flash Off : Randomize Timer
Do

Plot Rnd(319)!1Rnd(i99)!1Rrid(i5) .. ;
Loop • •<• . '

It's also possible to omit the X or Y coordinates from this
instruction. The poin t wi11 be p1o11ed at the gf x cursor position .

Plot 100,100,4 " • '
plot ,,i5o . - - . . . • :
Cls s Plot „ :

POINT (get the colour of a point)

c=P0INT(x,y) . . . , . . ; . . - • ' , • ' • •-',••

POINT returns the colour index of a point at coordinates x?y ; '".

Plot 100 J.100

Print "The colour at 100,100 is ";Point(100,100)

DRAW (draw a line)6 65

DRAW is another very Basic instruction. Its action to draw a simple
straight line on the Amiga's screen.

DRAW xl,yl TO x2,y2 ;•.• .

Draws a line between the coordinates x.1.,yl and x2fy2

DRAW TO x3,,y3 \

Draw a line from the current gfx crsr position to x3?y3,. Examples :

Colour 4,$707sink 4 .. . : '
Draw 0.50 To 200,50
Draw To 100,5.00' ;- \ rt ' .'. '..
D r a w To 0 , 5 0 • .-. , ' .,-, : •'• '<

BOX (draw a hollow retangle) .

BOX xl,yl TO x2?v2 , - . . . _ . ,. - •

The BOX coramand draws a hollow retangular box on the screen., x1,y3 .^e
the coordinates of the top left corner of the box, and x2,y2 are'the
coordinates of the point diagonally opposite.

POLYLINE (multiple line drawing) .

POLYLINE is very similar to DRAW except that it draws several lines at
a . t i " l ° - T * ' a " C " l f a l e a * = B « K 4 l i . 5 (, ^ O m p . l S x h o l l o w P H l v a o n « - i n - i l l a t a

single statement.

POLYLINE xl,yl TO x2,,y2 TO x35y3

CIRCLE (draw a hollow circle) / • 66

CIRCLE xty,r .

The Circle command draws a hollow circle with radius r and centre x,,y-

As normal; if the coordinates ar& omitted from this command, the circle .
will be drawn from the current cursor position 5 ,

Plot 100,100 s Circle ,,, 50 ,

ELLIPSE (draw a hollow ellipse)

ELLIPSE x,y,rl,r2 ' , :^;

The ELLIPSE instruction draws a hollow ellipse at coordinates x,y. The
horizontal radius is ri. It corresponds to exactly half the width of
the ellipse. ??. is the vertical radius and is used to set the height of
the ellipse. The total height of the ellipse is r!2 • - ^

Line types ,' , . ,. ' 67

AMOS Basic allows you to draw your lines using a vast range of possible
line styles.

SET LINE (set the.line styles)

SET LIME mask :: . *

The SET LINE command sets the style of all lines which i\re subsequently
drawn using the DRAW, BOX and POLYLINE commands.

"Mask" is a 16••••bit binary number which describes the precise
appearance of the line. Any points in the line which Are to be
displayed in the current ink colour are represented by a one, and any
points which a.re to be set to the background colour are indicated by a
zero. So a normal line is denoted by the binary number
?;l 111111 111 11111.1. and will be displayed as _. Similarly, a dotted
line like _ will be produced by a mask of %1111000011110000.

By setting the line mask to values between 0 and 65535, it is
possible to generate a great variety of different line types ;

Set Line *F0F0
Box 50,100 To 15G;,:l.5O •; .'

This line style as no effect on shapes drawn with CIRCLE or ELLIPSE,

Filled shapes

PAINT (contour fill)

* PAINT jc,y.,mode . ' ,

The PAINT command allows you to fill any region on the screen with a
solid block of colour™ Additionally you can select a fill pattern for
your shapes using the SET PATTERN command,.

x,y Are the coordinates of a point in*side the area to be filled.
"Mode" can be set to either 0 or 1. A value of 0 terminates the filling
operation at the first pixel found with the current border colour. A
mode of 1 halts the filling operation at any colour which is different
f r o m t h e e x i s t i n g i n k c o 1 o u r.

See EXAMPLE 6.1 in the MANUAL folder for a demonstration,.

BAR (draw a filled rectangle) •• " ., 68

BAR xl,yl TO x2.,y2 " ' : '. •. ' --

Draws a filled bar from xl,yi -the coordinates of the top left corner
of the bar- to x2 ?y2 -the opposite corner coordinates.

POLYGON (draw a filled polygon)

POLYGON xl, TO x2.,y2 TO x3,y3;-.'• . : . •
POLYGON TO xl,,yl TO x2,y2 ...

POLYGON generates a filled polygon in the current ink colour It's .
basically just a solid version of the standard POLYLINE command.
There's no real limit to the number of coordnate pairs you may use,,
other than the maximum line length permitted by AI1QS Basic: (255 chars).

Fill types •''• : :

In AMOS Basic: you ' re not j ust restr i cted to f i 11 ing your shapes wi th a
solid block of colour,, There Are dozens of fill patterns to choose
froffl? and you can even load your own patterns directly from the sprite
bank.

SET PATTERN (select fill pattern) 69

SET PATTERN pattern ;, .

This command allows you to select a fill pattern for use by your
drawing operations. There are three possibi.1.ities

Pattem--Q •'•'•.••'••

This is the default, and fills your shapes with a solid block of the
current INK colour.

If the pattern number is >0, AMOS Basic selects on of 34 built-in fill

styles. These are found in the MOUSE.AM file? on your start-up disc:,,
and can be edited using the AMOS Basic sprite definer,, Note that the
first three images in this files are required by the mouse cursor (see
CHANGE MOUSE). The fill patterns &re stored in the images from four
onwards.

Pattern<0

This is the most powerful option of all. "Pattern" now refers to a
sprite image in bank one,. The image is number calculated using the
formula: SPRITE IMAGE = PATTERN * (-1)

The selected image will be automatically truncated before use,,
according to the following rules

% The width of the image will be clipped to sixteen pixels
* The height will be rounded to the nearest power of two, ie 1,,2..,64

Depending on the type of your image., the pattern will be drawn in one
of two separate ways. Two-colour images are drawn in "monochrome". The
actual colours in your image are completely discarded, and the pattern
is drawn using the current ink and paper colours,, ,

It's also possible to produce multi-coloured fill patterns. In this
case the foreground colours of your image and merged with the current
ink colour using a logical AND,, Similarly the paper colours of your
pattern is OR'ed with the sprite background (colour zero). If you wish
to use your original sprite colours, you'll need to set the ink and
background colours like son

I n k 3 1 , 0 • . ' ' • " •] . " • .

Don't forget to load your sprite palette from the sprite bank with
GET SPRITE PALETTE before using these instructions,, otherwise the
display is likely to look rather messy. Examples of this instruction
can be found in EXAMPLE 6.2 in the MANUAL folder.

SET PAINT (set / reset outline mode) 70

S E T P A I N T n , . • . • *

Toggles the outline drawn by the POLYGON or BAR instructions. As a
default this mode is set to OFF.

If n=l then outline mode will be activated. •••.-' -

Writing styes

6R WRITING (ghange writing mode) • •

GR WRITING bitpattern ' '

Whenever you draw some graphics on the screen,, you naturally assume
that anything underneath it will be overwriteen. The GR WRITING command
A H O U S v o I.I -to c h o o s e -f F- o m A v ̂ n ci o c_; -f -f r; 1.1 p- -vt 1 -t svpriA -t 1 v & <:! i>- ̂ w -i. r* a «•> CJ o £> ̂ - ..

These can used to generate dozens of intriguing effects.

"Bitpattern" holds a sequence of binary bits which specify which

graphics mods you wish to use,, Here's a list of the various t
possibilities along with a brief explanation of their effects;:

JAM! mode (Bit 0=0) ; ?
JAM1 only draws the parts of your graphics which

are set to the current INK colour. Any sections drawn in the paper
colour are totally omitted- This is particularly useful with with the
TEXT command as it allows you to merge your text directly over an
existing screen background., For examples

Ink 2,5sText 140,80, "Normal Text":iGr Writing 0:
Text 140,71,"JAM1" * :

JAM2 mode (Bit 0=1) » .
T h i s i s t h e d e f a u 11 c o n d i t i o n ,, A n y e x i s ting

graphics on the screen will he completely replaced by your new image,.

XOR mode (Bit 1=1)
XOR combines your new graphics with those already

on the screen using a logical operation known as exclusive OR. The net
result is to change the colour of the areas of a drawing which overlap
ars existing picture.,

One interesting side effect of XQR mode is that you can erase any '
object from the screen by simply setting XOR mode and drawing your
object aqain at exactly the same position. EXAMPLE 6.3 contains a
simple demonstration of this technique and produces a neat rubber and
banding effect.

INVERSEVID (Bit 2=1) * : ,
This reverses the image before it is drawn. So any

sections of your image drawn in the ink colour will be replaced by the
current paper colour and vice-versa,, INVERSEVID mode is often used to
produce inverted text.

Since these modes are set using a bitpattern, it's possible to
combine several mode together. '-

Gr Writing 4 + 1 x Rem set JAI12 and INVERSEVID
Or Writing 7 s Rem chooses JAM2,INVERSEVID and XOR • •
Ink 2,5 ". Text 140,80, "Accession & Image rulez i"

NOTE: This command only affects drawing operations such as CIRCLE, BOX
and graphical text (TEXT)., The drawing mode used by normal text
commands like PRINT and CENTRE is set using a separate WRITING command,,
See also AUTOBACK. . " ' -

CLIP (restrict all gfx to a section of the screen) 71

CLIP Cxi!1yl TO x2.y2] • % :

The CLIP instruction limits all drawing operations to a rectangular '
region of the screen specified by the coordinates xi,yl to x2,,y2, -

xl,yl represent the coordinates of the top left hand corner of the
rectangle, and x2,y2 hold the coordinates of the bottom right corner.

Note that it's perfectly acceptable to use coordinates outside the
normal screen boundaries,, All the clipping operations will work as

expected, even if only a section of the clipping rectangle is actually

visible.

As you can see, only the parts of the circle which lie within the
clipping rectangle have been drawn on the screen. The clipping zone can

be restored to the normal screen area, by omitting all the coordinates

f r o rn t h i s i n s t r u c t i o n .

See EXAMPLE 6.4 in the MANUAL folder.

Advanced techniques •

SET TEfSPRAS (set temporary raster) '

SET TEMPRAS [address,size]

This instruction allows experienced Amiga programmers to fine tune the
amount of memory used by various graphics operations. WARNING;
improper use of this instruction can crash your Amiga copletely! .-,.

Whenever an AMOS program performs a fill command,, a special memory
area is reserved to hold the fill pattern,, This memory is automatically
returned to the system after the instruction has been terminated. The ':
size of the memory buffer is equivalent to a single bit plane in the
current screen mode,, So the default screen takes up to a total of 8k.

The size and location of the graphics buffer can be changed at any . 72
time using the SET TEMPRAS instruction,

"Size" is the number of bytes you wish to reserve for your buffer-
area. It ranges between 256 and 65536,, , . . . •

The amount of memory required for a particular object can be
calculated in the following

-• Enclose the object to be drawn with a rectangular box
-- The area required will given bys Size-=Width/3 * Height,,

If you are intending to use the PAINT command,, you should take care to
ensure that your figure is tdosed*,, otherwise more memory will he
neede and the system may crash.

"Buffer" can be either an addess or a memory bank,, The memory you
reserve for this buffer should always be CHIP ram,, Since the buffer-
area is now allocated once and for all at the start of your program,,
there's no need to continually reserve and restore the memory buffer.
This can speed up the execution of your programs by up to 5 "•;.,

You. can restore the buffer area, to its original value by calling the
SET TEHPRAS command with no parameters.

See the EXAMPLE 6,5 in the MANUAL folder,,

7 s CONTROL STRUCTURES 73
tot . _ _ _

• GOTO (jump to a new line number) . .'

I .';; The action of GOTO is to transfer the control of the program one place
' to another. There ar& three forms of the GOTO command allowes in AMOS;

\ " GOTO label .

i "label" is an optional place marker at the side of a line. Label names
* are defined using the ";" colon character like sos

I r label;

i The label name can consist of any string of alphanumeric characters you
I like, including "-". It's constructed using the same rules which apply
i for variables and procedure names,

j - GOTO line number ; . i

i Any AMOS Basic line cars be optionally preceded with a number,. These
• line numbers &re included solely for compatibility purposes with other
] versions of Basic (such as Si TOES for the Atari ST). It's better to rely
; on labels instead, as these are much easier to read and remember.

; ' GOTO variable , , , ,

Variable can be any allowable AMOS Basic, expression, This expression
may be either a normal ingerer or a string. Integers run a line number
for your GOTO, whereas strings hold the name of a label.

Technically speaking,, this construction is known as a computed goto.
It's generally growned upon by serious programmers, but it can be
incredibly useful at times. Examples:

R00M=3 - * : -
BEGIN: ' ; :'-•
Goto "ROOM"-J-StHKROOM)-" "" - ' :
E n d , . ' ' . ; ••• ." .-•

R00M3; . :
Print "Room three!" •
Goto BEGIN

GOSUB (jump to a subroutine) ' " 7 4

GOSUB is another outmoded instruction, and provides you with the useful :

ability to split a program into smaller, more manageable chunks, known
as subroutines. Nowadays, GOSUB has been almost entirely supplanted by ••••••
AMOS Basic's procedure system. However, GOSUB does form a useful
half-way house when you're converting programs from another version of
Basic: such as STOS,, .

As with GOTO,, there &re three different forms of the GOSUB
instruction. .

QO8US n J u m p to the -,r, u b r <:,« t i n <» «t l i n e r,

GOSUB name Jump to an AMOS label

GOSUB exp Jump to a label or line which results from the

expression in "exp"..

Example;

F o r 1 = 1 T o 1 0 . • • • • •

Gosub TEST • \

N e x t I • • • ' • • ' , . " •- .' .

Direct •.-, •
T E S T ; '•

Print "This is an example of GOSUB";Print "I equals ";I
Returns Rem Exit front subroutine TEST and return to main prg.

It's good practice to always plave your subroutines at the end of your
main program as this makes them easier to pick out from your program
listings. You should also add a statement like EDIT or DIRECT to end of
your main program, as otherwise AIIOS may attempt to execute your GOSUBs
after the program has finished,, generating an error message-

RETURN (return from a subroutine)

RETURN

RETURN exits from a subroutine which was previously entered using
GOSUB. It immediately jumps back to the next Basic instruction after
the original GOSUB. , .

Note that a single GOSUB statement can contain several RETURN
commands., So you can exit from any number of different points in your
routine depending on the situation.

POP (remove the RETURN info after a GOSUB) .'.,.- 75

P O P ", ••• .-. •• - ,

Normally it's illegal to exit from a GOSUB statement using a standard
GOTO.. This can occassionally be inconvenient., especially if an error
occurs, which makes in unacceptable to return to your program from the
precice point you left it. •

The POP instruction removes the return address generated by your
GOSUB, and allows you to leave the subroutine in any way you like,
without first having to execute the final RETURN statement. Example:

D o"',-'
G o s u b T E S T : ;:"':- "•'• ^

L o o p . • , '-'•

BYE: .
Print "Popped Out" ; . . .' .
D i r e c t s • -' ''
T E S T s • •.•'",
P r i n t " H i t h e r e ! " ••;••

If Mouse Key Then Pop :: Goto BYE
Return •

IF...THEN...[ELSE] (coose between alternative actions) 76

The IF...THEN instruction allows you to make simple decisions (within a

Basic program. The format is:

IF conditions THEN statements 1 [ELSE statements 2]

"conditions" can be any list of tests including AND and OR,, Statements
1 and Statements 2 must be a list of AMOS Basic instructions,, If you
want to jump to a line number or a label,, you'll have to include a
separate GOTO command like sos

If test Then Goto Label s This is fine.

If you forget about this, and leave the "Goto", you'll get an error
message "procedure not defined". :

If test Then Label s Rem THIS CALLS A ^PROCEDURE*

The scope of this IF...THEN statement is limited to just a single line
of your Basic program. It has now been superceded by the much more
powerful IF...ELSE...ENDIF command.

IF...[ELSE]...ENDIF (structured test)

Although the original form of IF...THEN is undoubtedly useful, it's
rather old fashioned when compared with the facilities found in a
really modern version of Basic such as AMOS. This allows you to execute
whole lists of instructions depending on the outcome of a. single test.

IF tests=TRUE * • , •
<List of statements 1>

ELSE
<l...ist of statements 2>

at il v - : -

E N D I F . , ' • • . / • '

Note; it's illegal to use a normal IF...THEN inside a structured test!
These should be replaced by their equivalent IF ENDIF instruction ;

If test Then Goto Label Else Label2

This now becomes: '

If test :: Goto Label :i Else goto Label2 s Endif

o r ; . : ' . - . . .•' ' .

If test
Goto Label

Endif

Here is an example of the IF.,,ENDIF statement in actions

Input "Enter values for a,b and c";A,B,,C -
If A=B ' . ' -
Print "Equal" -

• . E L S E • • . • - • • . . _ .•• . ' •

Print "Different";
If AOB and AOC

Print % and C is not the same too!"
Endif

End it

Each IF statement in your program MUST be paired with a single ENDIF'
command as this informs AMOS Basic precisely which group of
instructions are to be executed inside your test,.

Nate that "THEM" is not used by this form of the instruction at all.
This may take a little getting used to it you are already experienced
with one of the other versions of Basic for the Commodore Amiga.

FOR...NEXT (repeat a section of a code 77
a specific number of times)

FOR index=first TO last [STEP inc] . ' \ ^ ;

•Gist of instructions!?-
N - •

NEXT [index] . • •

"Index" holds a counter which will be incremented after each and every
loop. At the start of the loop,, this counter will be loaded with the
result of the expression "first".. The instructions between FOR and the
NEXT Are now performed until the NEXT is reached,

"inc" is a value which will be added to the counter after each loop
by the NEXT instruction. If this is omitted,, the increment will be
automatically set to 1.

Note that if "inc" is negative., the loop will be halted when the
counter is less than the value in "first". So the entire loop will be
performed in reverse. • •

Once inside loop, "index" can be read from your program just like a
normal variable. But you are *M0T* allowed to change its value in any
way as this will generate an error message. . . .

E a c h F 0 R s t a t e m s n t i n y a u r p r o g r a rn M U S T b e m a t c h e d b y a s i n g 1 e NE X T
instruction. You can't use the shorthand forms found in other Basics
like NEXT R1,R1. Here ures a couple of examples of these loops:

For 1=32 to 255 s Print Chr*(I) ; sNex t I " .".

For Rl=20 to 100 Step 20 • * .
For R2=20 to 100 Step 20 .;••.. '
For A--0 To 3

I n k A , ._. • . • " " • " . - . . :

E l l i p s e i60.i00,,Rl.,R2 * . " -.- v . "•:
Next A

N e x t R 2-••'...'

N e x t R l • . " • . - • • . -

WHILE...WEND (repeat a section of . ' • .78
code while a condition is true)

WHILE condition

list of statements '
e m "

WEND

11 condition11 can be any set of tests you like and can include the
constructions AND, OR and MOT., A check is made on each turn of the
loop. If the test returns a value of ~1 (true),, then the statements
between the WHILE and WEND will be executed, otherwise the loop will be
aborted and Basic will proceed to the next insturction. Type the
following example:

Input "Type in a number"5X
Print "Counting to 1.1" •,-.-•
While X<11

Inc: X
Print X -

Wend
Print "Loop terminated" ;,.

The number of times WHILE loop in this program will executed depends on
the value you input to the routine, If you enter a number larger than
10, the loop will never be executed at all. WHILE will therefore only
execute the statements if the condition is TRUE at the start of your
program.

REPEAT...UNTIL (repeat until a condition is satisfied)

REPEAT , . * -• • _ .

l i s t of s t a t e m e n t s • • • • • •

UNTIL condition ^

REPEAT...UNTIL is similar to WHILE...WEND except that the test
completion is made at the end of the loop rather than the beginning.
The loop will be repeated continually until the specified condition is
FALSE. So it will always be performed at. least once in your program.
Example:

Repeat . ' .

Print "AMOS Basic" : .. . :
Until Mouse KeyOO -

DO,,..LOOP (loop forever) > : 79

» o . • . " • ' - ,

list of statements

LOOP • • ' ' ;••• • -:

The DO...LOOP commands take a list of Basic: statements and repeat them
continually. In order to exit from this loop, you'll need to use a '.
special EXIT or EXIT IF instruction. ' ;,''•,,

The advantage of this system is that it's a structure alternative to
the GOTO loops that tend to crop up in earlier versions of Basic. Take
the following example:

TEST: '
Input "Another game (Y/N)"$AW*
If Upper*(AN$)--"N" Then Goto BYE

] GAME s Resii c a l l play game procedure |
; Goto TEST ' • \
• * BYEs ' • I
\ E n d . - . • • " • . f

) Now a second version using DO., ,.LOOP
! • • ' • . • . - > . . -

! ' D o . ' • - . • • . • : • " •

| INput "Another game (Y/N)";AN* .
{ Exit If Upper*(AN*)="N" >
I . GAME : Rem call play game procedure •... * ..." •
\ Loop
\ End

EXIT (Exit from a DO .LOOP)

E X I T [n] • . . . • . . , - . - '

The EXIT command exits immediately from one ore (nore program loops
created with the FOR...NEXT, REPEAT „. ,,UNT I!.,,, WHILE, „„ WEND,, or DO,,.,.LOOP
statements. Your AMOS program will now jump directly to the next
instruction after the current loop. \

"n" is the numver of loops you wish to leave. If it's omitted, then
only the innermost loop will be terminated.

EXIT IF (Exit from a loop depending on a test) ;, 80

EXIT IF expression!! ,,ri] , .

"expression" consistes of a series of tests in the standard AMOS
format. The EXIT will only be performed if the result evaluates to -1.

The "n" parameter works the same way as using EXIT command.

EDIT (stop running the prog and return to Editor)

EDIT • • • ; • • • , . : •

The EDIT directive stops the current program and returns to the AMOS
Eiasic: editor., This can be very useful when you are debugging one of
your progs.

DIRECT (exit to direct mode)

DIRECT ,

Terminates your program and jumps to the direct mode immediately. You
can now examine the contents of your variables or list your programs
out to the printer.

END (Exit from the program) : 81

END

This instruction exits from a program.. You'll now be given the option
to return to either the editor or to direct mode.

0N...PR0C (jump to one of several
procedures depending on a variable)

ON v PROC proci., proc:2,, proc3, . ..procN

Jumps to a named procedure depending on the contents of variable ••,••„
Note that any procedures you use in this command CANNOT include
parameters. If you need to transfer information to this procedure, you
should place them in *global* variables instead,, See PROCEDURES for'a
full explanation of this technique,,

The ON,, ..PROC command is effectively equivalent to the following!

If v=J. Then Proci
If v:=2 Then Proc2

If v;:::n Then ProcN

ON ...GOTO (jit dip to one of a list of lines
depending on a variable)

ON v GOTO linel, I:i.ne2., I:i.ne3. n..l:i.neN

The OK! GOTO instruction lets your program jump to one of a number of
lines depending on the result of an expression in v. It's equivalent to
the fo11owing lines:

If v=l Then Goto Linel
If v-:2 Then Goto L.ine2

If v=n Then Goto LineN

ON...GOSUB (GOSUB one of a list of
routines dependig on var)

ON v&r GOSUB linel, Iine2, Hne3, „. „

This is identical to ON.,,, .GOTO except it uses a gosub rather than a
goto to jump the line,,

LVfcRY n GOSUB (call a subroutine at regural intervals) • 82

EVERY n GOSUB label

The ON EVERY statement calls the subroutine at label at regural
intervals, without interfering with your main program.

"n" is the length of your interval in 50ths of a second. The time
taken for your subroutine to complete must always be less than thi->
period, or you'll get an error.

Error handling

; ON ERROR GOTO (trap an error within a Basic prog) . *

• ON ERROR GOTO label
j •• ' • •

I This command allows you to detect and correct the errors inside an AMOS
j ' Basic program, without having to return to the editor window.,
\ . Sometimesj errors can arise in a program which &re impossible to
• predict in advance. Take, for instance, the following routines ._
"I

; Input "Enter two numbers"?A,B . .
I Print A;" divided by "nBs" is ";A/B
j Loop

j This program vjorks fine until you try to enter a zero for B. You can
1 avoid the "division by zero error" by trapping the error with an ON
i ERROR GOTO instruction like so; . • . . - • • .

" ON ERROR GOTO label „ ' . ,\:
i
I Whenever an error occurs in your Basic program, AMOS will now jump
| straight to "label". This will be? the starting point of your own error
(correction routine which can fix the error and safely return to your
! main program.
1

j Note that error handler MUST exit using a special RESUME instruction.
j You are not allowed to jump back to your program with a normal GOTO
i statement.
] , • . • • • ' .

' -. On Error Goto HELP
Bo • •• '

Input "Enter two numbers" i;A,B -. .• .
Print A;" divided by "5B5" is ";A/B ;

Loop
HELPs "
Print s Print s Bell
Print "I'm afraid you've attempted to divide with zero!"
Resume Next; Rem Return back to the next instruction.

In order for this system to work, it's essential that an error does not
arise inside your error correction routine, otherwise AMOS will halt
your program ignominiously.

The action of ON ERROR GOTO can be disabled by calling ON ERROR with
n o parameters. . . .

On Error !i Rem Kill error traps ' ... •

OKI ERROR PROC (Trap an {error using a procedure) • ..'..84

ON ERROR PROC name • -

Selects a procedure which will be called automatically if there's an
error in the main program,, It's really just a structured version of the
o KI in: p ft o a a a r o -_ 1 ̂ -t e n « r, -t..

Although your procedure must be terminated by and END PROC in the
normal way,, you'll need to return to your main program with an

additional call to RESUME!. This can be placed just before the final END

PROC statement.

RESUME (resume execution of the program 85

after an error)

There Are five possible formats of this instructions . , • •

RESUME . , . • ' • ' • ';•

Jumps back to the statement which caused the error and tries again»

RESUME NEXT

Returns to the instruction just after the one which caused the error, . ,

RESUME LINE ,, ,

Jumps to as specific line point in your main program, "line" can refer
to either a label or a normal line number. This may *M0T* be used to
re-enter a procedure!

Procedures are? treated slightly differently. If you want to jump to a
particular label,, you have to place a special marker somewhere in the
procedure you are checking for errors. This may be accomplished using
the RESUME LABEL command. There &rs two separate versions.

RESUME LABEL label •

Defines the label which is to be returned after an error. This must be
called outside your error handler just after the original ON ERROR PROC
or ON ERROR GOTO statement. •

RESUME LABEL

Used inside your error handler to jump straight back to the label
you've set up with the previous command. Examples

On Error Proc HELP . • •
Resume Label AFTER / : "•,''••
Error 12 .- ;

Print "Never Printed"
AFTER s Print "I've returned here" •-....
E n d , -.,'•• •,'. :

Procedure HELP , •
Print "Oh Dear, I think there's an error!" .
Resume Label , •

Endproc . , •

=ERRhl (return the number of last error)

e=ERRN

If you're creating your own error handling routines using the ON ERROR
command, you'll need to be able to check precisely which error has
occurred in the main program.

When an error occurs,, ERRN is automatically loaded with its
identification number., See the Apeendix at the end of this manual for a

*~ full list of the possible errors.

Print ERRKi

ERR0R (generate an error and return to the Edi tor)

ERROR n

The action of the ERROR command is to actually generate an error,,
Supposing you have created a nice little error handling routine which
is able to cope with all possible disc errors. ERROR provides you with
a simple way of simulating all the various problems, without the
inconvenience of the actual error. Examples

Error 40

Quits the program and prints out a "Label not defined" error.

Error Errn

This uses the ERRN function to print the current error condition after
a problem in your program.

j 8:i TEXT AND WINDOWS 87

\ . . . ' • •

1 Text Attributes . . .
i ,

i • ' ' ' '
•) PEN (set colour of text)

PEN index " . - • " ' . '

The PEN instruction sets the colour of all the text which will be •
displayed in the current window. This colour can be chosen from one up ::
to 64 different possibilities depending on the gfx mode you're using.
Examples '

PEN 6 .

~-PEN$(n) (change the pen colour using ctrl chrars)

a$~-PEN$(n)

PEN$ returns a special control sequence which changes the pen colour
inside a. s t r i n g . T h e n e w p e n c o 1 o u r w i 11 b e a u t o m a t i c a 11 y a s s i g n e d
whenever this string is subsequently printed on the screen,, Examples

C*=Pen*(2)+"White "+P»n*(6)+"Blue" '
Print C$

The string returned by PEN$ is in the format.:
Chr*(27)+"P"+Chr*(48+n) •

PAPER (set colour of the text background)

PAPER index

"index" can be a number between 0-63.

=PAPER$(n) (return a control sequence to . • 88
set the paper colour) :

x$=PAPER$(index) . -'"' •'•

PAPER* returns a character string which automatically changes the
background colour when it's printed on the screen. For example:

Pen 1: C*--Paper*(2) + "White "+Paper$(6) + "B
Print C$

INVERSE ON/OFF' (enter inverse mode)

INVERSE ON/OFF

The INVERSE * ho b«k,round Col<

SHADE ON/OFF (shade all subsequent text)

SHADE ON/OFF

SHADE ON highlights your text by reducing the brightness of the
characters with a mask pattern,, The shade of your text can be returned
to normal using SHADE OFF

UNDER ON/OFF (set underline mode) 89

UNDER ON/OFF

UNDER OKI underlines your text when it's printed on the screen, UNDER
OFF turns off the mode,

WRITING (change text writing mode)

WRITING wi t,w2] ••..:.' ' .

The WRITING coin {Rand allows you to change the writing mode used for all
subsequent text operations. This determines precisely how your new text
will be combined with the existing screen data.

w.t-0 REPLACE (Default) Your new text will obliterate
a nyt hin g under ne a t h i t„

wl=i OR Merges the characters onto the
screen with a logical OR.

wl=2 XOR Chars are combined now with XOR.

wl:-3 IGNORE . ' Printing operations are ignored!

The secont number chooses which parts of the text will be printed on
the screen. This option can be omitted if required. . .

w2=0 Normal The text is output to the screen along with
the background.

w2--l Paper Only the background of the text is drawn on
the screen,

w2=2 Pen Ignores the paper colour and writes the
text on a background of colour zero.

Do *N0T* confuse this with GR WRITING!

Cursor functions ,

AIIOS includes a range of facilities which let you move cursor to any
part on the screen.

LOCATE (position the cursor) " 90

LOCATE x,y
LOCATE x. Locate moves the text cursor to the coordinates x y
LOCATE ,y This sets the starting point for all future printing

operations. All screed positions are specified using

a special set of text coordinates,, These &"^ meadured in units of a •)
single character relative to the top left corner of the text window, |,.
For instance the coordinates 15,10 refer to a point 10 chars down and -, |

15 to the right,, ' . '

If you attempt to print something outside window limits an error will
be generated.

Note that the current screen is always treated as window 0. So you
don't have to actually open a window before using one of these \
functions,,

CI10VE (relative cursor movement)

CMOVE w,h : "

Moves the cursor a fixed distance away from its present position. If
your cursor was at 10,10,, then typings

CMOVE 5,-5 • . ; • „ - .

would move the cursor to 15,5. Like LOCATE you can omit either one of
the coordinates as required.

=AT (return a sequence of ctrl chars , 91
to position the cursor)

x*=AT(x,y)

The AT function allows you to change the position of text directly from
inside a character string,, It works by returning a string in the
format;

Chrf(27)+"X"+Chr*(27)+"Y"+Chr$(48+Y)

Whenever this string is printed, the text cursor will he moved to the
coordinates x.y» For example:

A*="This"+At(10,i0) + "Is"+At(l,2) + "The Power Of "+At (20,20) + "AilOS i"
Print A$

These AT commands &re perfect for hi-score tables as they allow you to
position our text once and for all during your prog rains initialisation
phase. You can now update the score at the correct, point on the screen
using a single print statement... Here's an examples

HI_SC0RE*=At(20,10)+"Hi Score "
SC0RE-1OOO0
Print HI_SC0RE$;SCORE

Conversion functions

AMOS Basic provides you with four useful functions which readliy enable
you to convert between text and graphics coordinates..

=XT E X T (con v e r t a n x coo rd i na t e g f x-> tex t f o rmat) 92

=YTEXT (convert an y coordinate qfx-->text format)

t^XTEXTCx)
t=YTEXT(y)

These functions take normal x/y coordinates and convert them to text
coordinates relative to the current window. If the screen coordinate
lies outside this window then a negative value will be returned. See
EXAMPLE 8.1. • .'-"••

=XGRAPHIC (convert an x coordinate text-->gfx format)
=YGRA PHIC (con ve r t a n y coo r d i n a t e t e xt->gfx for ma t)

g=XGRAPHIC(x) . • ,
g=XGRAPHIC(y)

These functions are effectively the inverse of XTEXT and YTEXT in that
they take a text X (or) Y coordinate ranging from 0 to the width/height
of the current window and convert them to absolute screen coordinates.
See EXAMPLE 8.2

Cursor coinmands

The text cursor serves as a visible starting point of all future text
operations„ 11's usua11y displaved as a f1ashing horizontal bar,
although this may be changed using the SET CURS and CURS OFF commands,

By moving the cursor on the screen, you can position your text
practically anywhere you like. Remember,, all coordinate measurements
are taken using TEXT coordinates relative to the current window.

HOME (cursor home)

HOME . - . • ' •

Moves the text cursor to the top left hand corner of the current window
(coordinates 0,0)

CDOWN (cursor down) ' :•. 93
C D Q W N . • • • • • ' . -

Pushes the text cursor down by a single line. ::

-CDOWN* (return a Chr$(31) character) -
x*=CD0WN*

CDOWN* is a function which returns a special control character which
automatically moves the cursor when it is printed. So Print CDOWN* is
identical to CDOWN. CDOWNf allows you to combine several cursor
movements in a single string. For examples

c * - - "viucdo™,,* , ;

For A=0 to 20 : . /
Print C*5 , \

Next A

CUP (cursor up) j

CUP \

Moves the text cursor up a line in the same way that CDOWK! moves down.

-•CUP* (return a Chr*(30) character) _.

x*=CUP*

CUP* returns a control string .which moves the cursor up by a single

character.

CLEFT (cursor left) . 94

CLEFT . ,

Displaces the text cursor one character to the left, :

=CLEFT* (Control string for CLEFT Chr*(2?))

x*»CLEFT*

Moves the text cursor one character left. Works like --CUP*.

CRIGHT (cursor right)
CRIGHT

Moves cursor one place to the right.

=CRIGHT$ (Generate a Chr*(28) control string for CRIGHT)

x*=CRIGHT* .. •-

Is the opposite of CLEFT*. •

XCURS (return the X coordinate of the text cursor)
YCURS (return the Y coordinate of the text cursor) • 95

x=XCURS
y=YCURS '- . • -

XCURS is a variable containing the current X coordinate of the text
cursos (in text format)™ YCURS holds the Y coordinate of the cursor.

SET CURS (set text cursor shape)

SET CURS Ll;1L2,,L3,L4sL5,1L6,i...7,L8

This instructoin allows you to change the shape of the cursor to
anything you like. The shape is specified by a list of bit-patterns

held in the parameters L1-L8, Each parameter determines the appearance

of the horizontal line of the cursor,, luunbered from top to bottom.

Every bit represnts a single point in the current cursor line. If
it's set to 1 then the point will be drawn using colour number 3 ••-
otherwise it will be displayed in the current PAPER colours,, Example:

Ll=Sill11111
L2=211111110
L3=X1ill1100
L4=:illlllOOO
L5=X11110000 :
L6=y.l 1100000 .
L7=£11000000
L8=?U 0000000
Set Curs LI ,1.2,13,L4,L5;1L6,IL?,,LS

CURS OK!
CURS OFF

CURS ON/OFF (enable/disable text cursor)

makes text cursor visible
hides the cursor in current window

MEMORIZE X
MEMORIZE Y

REMEMBER X
REMEMBER Y

MEMORIZE X/Y (save the X or Y
coordinates of the text cursor)

The Memorize commands store the current cursor oosition,

REMEMBER X/Y (restore the X or Y
coordinate of the text cursor)

REMEMBER positions the cursor at the coordinates saved
by a previous call to MEMORIZE„ If MEMORIZE has not been

used then the coordinates will be set to zero. See EXAMPLE 8.3

CLIME (clear part or all of the current cursor line)

CLIME En] - .

Clears the line on which the cursor is positioned. If n is present then
"n" characters &r& cleared starting at the current cursor position,. -.;

CURS PEM (choose a new colour for the text cursor)

CURS PEW n

Changes the colour of the text cursor to index number n.

96

Text Input/Output

CENTRE (print a line of text centred on the screen)

CENTRE a*

Takes a string of characters in a* and prints it in the centre of the
screen. This text is always output on the current cursor line.,

Locate 0,1
Centre "This is a centered TITLE" .: .

=TAB* (print tabulation) 97

x$--TA6*

TAB* returns a control character known as a TAB (Ascii 9), When this
character is printed the text cursor will be immediately moved several
places to the right- The size of this movement can be set using the SET
TAB kommand. As a default., the tab spacing is set to four (4),,

SET TAB (change the tabulation)

SET TAB n -

This specifies the distance the text cursor will move when TAB
character is printed. ,

REPEATS (repeat string) •.

x$=REPEAT* (a$,,n) • , *)•;•

The REPEAT* function allows you to print out the same string of
characters several times using a single PRINT statement,,

It works by adding a sequenve of control characters into variable X$.
When this string is printed,, AIIOS simply repeats a* to the screen n
times. Possible values for n range between 1 and 207. See EXAMPLE 8.4.

The format of the control string iss .

Advanced Text Commands 98

ZOhEt (set up a zone around a piece of text)

The ZOK1E$ function surrounds a section of text with a screen zone.
After you have defined one of these zones you can check for coillisions
between the zone and the mouse using the ZONE function. This allows you
to create powerful on-screen menus and dialogue boxes without having to
resort to any complicated programming tricks.

a* is a string containing the text for one the "Buttons" in your

dialogue box. This button will be activated automatically when you

print x$ to the screen.

n specifies the number of screen zone to be defined. The max. number
of these zones depends on the value you specified with RESERVE ZONE.

See the EXAMPLE 8,5 program in the MANUAL folder,, The format of the

control string is:
Chr*(27)+"ZG"+A$+Chr*(27)+"R"+Chr*(48+n) ,

BORDER* (add a border to some text)

x$=BORDER*(a*,n) '•.'••.

This returns a string of control characters which instructs AMOS to
draw a borcler aound the requi red tex t. 11' s common 1 y used in
conjunction with the ZONE* command to produve the fancy buttons found
in dialogue boxes and alert windows.

R is the border number ranging from 1 to 16 and a$ holds the text to
be enclosed by the border. The text in a* will start at the current
cursor position so don't be surprised when you get strange results
printing at 0,0. To create a screen zone by a border try this:

Print Border$(Zone$(" CLICK HERE ",,1).,2)

This would enclose the text with zone number 1 and border 2» The
control sequence isx

Chr$(27)+"EG"+A*+Chr*(27)+"R"+Chr$(48+n)

HSCROLL (horizontal text scrolling)

HSCROLL n • ' -;''. - • •

This scrolls all the text in the currently open window horizontally by
a single character position, n can take the following values;

1 = Move current line to the left
2 = Scrolls entire screen to the left
3 = Move current line to the right
4 = Move screen to the right

VSCROLL (vertival scroll) 99

'-.'SCROLL n .

Scrolls the text in the currently open window vertically.

1 = Any text at the cursor line and below is scrolled down
2 -- Text at cursor line or below is moved up
3 -- Only text from the top of the screen to the cursor line

is scrolled up
°> -- Text from top of the screen to the current cursor position

i s s c rolled do wn
Blank lines are inserted

to pad out the gap left by the scrollingoperation.

Windows

The AMOS windowing commands allow you to restrict your text and
graphics operations just a part of the current screen.

AMOS windows can be used with the zone commands to produce effective
dialogue boxes such as file selectors and high score tables., A typical
warning box, for instance, can be easily generated with just a couple
lines of AMOS Basic.

WINDOPEN (create a window) /

WINDOPEN n, x. y, w, h [,border [,set]]

The WINDOPEN instruction opens a window and displays it on the screen..
This window will now be used for all subsequent text operations,,

n is the number of the window to be defined,. AMOS allows you to
create as many windows as you like,, limited only by the amount of
available memory. As a default, window number zero is assigned to the
current screen. So don't a11empt to re-open this window using WIND0PEN
or change it with WIND SIZE or WIND MOVE.

x,y are the graphics coordinates of the top left hand corner of your
new window., Since AMOS windows are drawn using the Amiga's blitter
chip, the window area, must always lie on a 16-pixel boundary. In order
to achieve this, the x coordinates are automatically rounded to the
nearest multiple of 16. Additionally, if you've included a border for
your window, the X coordinate will be incremented by a further eight.
This will ensure that the working area of your window always starts at
the correct screen boundary. There are no restrictions whatsoever on
the y coordinates. . . . - • , y

w,n specify the size in characters of the new window,, These 100
dimensios must always be divisible by 2. •

"border" selects a border style for your window,, There AY'B 16
possible styles, with values ranging between 1 and 16,,

Window borders can also include up to two optional title lines. One
title is displayed along the top of the window and another may be added
at the bottom.

AMOS windows may contain either text or graphics, just like the • .
intuition system. Each window can be assigned it's own individual
character set with the powerful WINDOW FONT command. There's also a
powerful WIND SAVE instuction which saves the screen area inside your
windows. Whenever you move one of these windows the contents underneath
will be automatically redrawn. For example;

For W=i To 3 .
Windopen W,(W-l3*96,50,10,101
Paper W+3 : Pen W+6 : CIw , ..
Print "Window ";W

Next W
You can flick between these windows using the WINDOW command. Try

typinq the following statements from the Direct modes

Window 1 : Print "AMOS11

Window 3 s Print "in action!"
Window 2 : Print "Basic"

The active window can always be distinguished by a flashing cursor
through this can be turned off using the CURS OFF- command if required,

! WINDOW FONT (change window font)

I WINDOW FONT n . . .

Changes the font used by the current window to set n. n is the number
of a graphics font which has been previously installed with the GET

; FONT command. This font Kmust* have dimensions of exactly 8x8,
Proportional fonts are not allowed. , •

; Since the window vborders make use of some of these characters, you
fli a y q et rat her odd res u11s when yau ' re u s ing s t a n d ar d WBe n c h f o nt s.

WIND SAME (save the contents of the current window)

WIND SAVE •••;•• .. • • ' • • • ,

The WIND SAVE command allows you to move your windows anywhere on the
screen without corrputing your existing display.

Once you've activated this feature,, any windows you subsequently open
will automatically save the entire contents of the windows underneath„
This area will be redrawn whenever you close a window or move it to a
new position™

It's important to note that this option saves the contents of the
current window,, rather than the one you are defining with WIND OPEN-

At the start of your program the current window will be the default
screen and wi11 take up a massive 32k of memory. If you wished to save
the background underneath a dialogue box the most of this memory would
be completely wasted.,

The solution is to create a dummy window of the required size, and to
position it over the zone you wish to save. You can now execute a WIND
SAVE command and continue with your program as normal,,

When you subsequently call up your dialogue box the area underneath
will be saved as part of your dummy window. So it will be automatically
restored after your box has been removed,,

BORDER (change the window border of the) 101

current screen) . :

BORDER n,paper,pen . - .

Tho BORDER command se ts the border of the:- c u r r e n t window to styles?

number n. This border is drawn using a group of characters installed in
the default font,, It is therefore possible to create your own border

styles using the font tie finer accessory.

The paper and pen options allow you to freely choose the colours of

your border- Acceptable border numbers range from 1 to 16.

> Any of the parameters may be omitted from this instuction so the

following commands are legals

BORDER 2,, ;

BORDER 2,.,3 . .

TITLE TOP (define the upper title for
the current window) . ,

TITLE TOP

This instruction sets the top line of the current window to the title
string in t$. Only bordered windows fnay be titled in this way,

Windopen 5,1,1,20,10 ,
Title Top "Window Number 5"
Wait Key ;\. :

TITLE BOTTOM (define the lower title for
t he cv, r ren t window)

TITLE BOTTOM b$

This command assigns the string b$ to the bottom title of the current
window.

WINDOW (change current window) . 102

W I N D O W n € -.' . . ' • ' • • ' • .

WINDOW activates the window n as the current window- If the automatic
saving system has been initiated, this window be immediately redrawn
along with any of its contents. See EXAMPLE 8.6 in the Manual folder.

:=WIMDON (Return the value current window)

w = W I N D 0 W • • . • - . • , . • . •

WINDON returns the identification number of the currently active
window,,

WIND CLOSE (close the current window)

WIND CLOSE

l> K X &• t. e-r -in ± 11 K- <;; *.% r r «•? r\ t. ^> j. ri d ̂ w ,. U ~* e? -I.-. I-. e? W X Ktl> Hi A V I!" £:. & m tr. ̂ n <.i

a r a a t h a t w a s h i d d e n b e r e d r a w n b y,.

W I. ND PI 0 V E (m o v e a w i n d o w)

WINDMOVE x,y •

Windmove moves the current window to graphics coordinates %,y. As with
the original window definitions the x coordinate will be rounded to the
nearest 16-pixel boundary,,

WIND SIZE (change the size of the current window) 103

WIND SIZE sx,sy ; • .

This command changes the size of an AMOS window,, The new sizes,, sx and
sy, are specified in units of a single character,, Sx must be divisible
by two,, See EXAMPLE 3.7. ; ,

If you've previous!/ called the WIND SAVE command, the original
contents of your window will be redrawn by this instruction. If the new
window is smaller than the original one, any parts of the image which
lie outside will be lost. Alternatively,, if you've expanded your
window, the area around your saved region will be filled with the
current paper colour. Also note that after a WIND SIZE command the text
cursor is always reset to coordinates 0,0,,

CI...W (clear the current window)

CLlti • . . . • • • . •;• . . - • . . '

Erases the contents of the current window and fills it with the current
PAPER colour.

Slider bars . 104'

AHOS incorporates three insturctions which allow you to display a
standard slider bar on the screen,, These sliders cannot be manipulated
directly with the mouse. In order to create a working slider bar,
you'll need to write a small Basic routine to perform this operate in
your main program. Due to the sheer power of the AMOS system, this is
e xt reme1y easy t o a c co f n p1i s h, and the r es u11 s c a n be e x t re m e1y
impressive,, as can be seen from EXAMPLE ELS.

HSLIDER (draw a horizontal slider)

HSLIDER xl,yl 0T x2,y2, total, pos,, size .

Draws a horizontal slider bar from xl,yl to x2,y2. "total" is the
number of individual units which the slider will be divided into. Each
unit represents a single item in the object you are controlling with
the slider. TSo in the editor window, "total" would be set to the
number of lines in the current program. The size of each unit is
calculated from the following formula;

(X2-X1)/Total

r
I '' ..DOc« iS thp position of the slider box from the start of the slider,
* measured in the units you specified using "total",, "size" is the lengtn
i - of the slider box in the previous units,, See tXftMHLb ti.y.

VSLIDER (draw a vertical slider)

VSLIDER xl,yl TO x2,y2, total ,pas:,5ize . ,

VSLIDER is almost identical to the previous HSLIDER insturction. It
displays a simple slider from xl,,yl to x2,y2. See EXAMPLE 8.10.

SET SLIDER (sets the fill patterns
used in a slider)

SET SLIDER bl, b2, b3,pb,sl >,s2,s3, ps •

Although this command looks incredibly complicated, it's actually
rather simple. SET SLIDER enters the colours and patterns to be used in
the slider bars created with the H/VSLIDER commands.

"bl,b2,b3" set the ink,, paper and outline colours for the background
of the box, "pb" chooses the fill pattern to be used for these regions. 105

"sl,s2,s3" input the colours of the slider box, and "sp" selects the
p a 11 e r n i t i s t o b e f i 11 e d w i t h.

"bp" and "sp" can be any fill patterns you wish,, As usual, negative
value refer to a sprite image from the current sprite bank,, This allows
you to create amazing colorful slider boxes.

Fonts .

There are two different types of fonts available in AMOS - text fonts
and graphic fonts. The text fonts Are those used by the PRINT and.
WINDOW commands. Text fonts are known as character sets and each APiOS
Basic window can have its own individual set. The graphic fonts Are
much more flexible and offer a wider range of styles:

Graphic text

Your Amiga computer is capable of displaying an impressive variety of
different text styles,, The original WorkBench disc was supplied with
eight attractive fonts in a range of sizes, and many more of these
fonts are freely available from the public domain- If you've upgraded
to WorkBench 1.3, you'll also be able to design your own fonts usinq
the FED program on the Extras disc.

Ail OS provides you with total support for these fonts. Text can be
printed in any of the available typefaces at any point on the screen.

AMOS fonts can be used to add spice to even the most Basic games.
These Are invaluable for producing the loading screens arid hi-score
tables in your games,, So it's a good idea to make full use of them in
your progs.

TEXT (print graphical text) iu6 j
j

TEXT x,y,t* ;

TFXT prints a line of text in t* at graphical coordinates x,y. All ' ;

coordinates are measured relative to the characters baseline. This can

be determined using a special TEXT BASE function.

Normally the baseline is positioned at the bottom of the character,

but some lowercase letters., such as "g", have a "tail" which extends

slightly below this point.

As a default the type styles is set to eight-point Topaz,, This may be
changed at any time using the SET FONT instruction. Try the following
program and notice how text can be placed at any pixel position on the
screen. ,.-•••

Do

Ink Rnd(15)+l,Rnd(15): Text Rnd (320H1 ,Rnd (198) + 1,," AMOS Basic"

Loop

Al so notice how the colour of your text is set with INK rather than ;
the expected PEN and PAPER commands. This emphasizes the fact that the
TEXT command is basically a graphical instruction. So the control
sequences created by functions like CUF'$ will be printed on the screen
instead of being correctly interpreted. :

There is no automatic line feed when the text reaches the end of the '•
current window. If you attempt to print something too large,, the text j
will be neatly clipped at the existing screen boundary. This can be >
seen by the example below: "

Print String*("A%100):Text 0,100,String*("A",100)

GET FONTS (create a list of all available fonts)

GET FONTS ^

The GET FONTS command creates an internal list of the all fonts
avai 1 ab 1 e f ram the curren t star t••-up d isc „ This 1 ist is essen tia 1 to the
running of the SET FONT command, so you should always call GET FONTS at
least once before attempting to change the present font setting. The
contents of this list can be examined using the FONT* function.

WARNING! In order for GET FONTS to work,, your current AH0S work disc
must always contain a copy of the standard LIBS folder along with its
contents. It's important to remember this fact when you ars
distributing run-only or compiled programs because unless your discs
contain the required files, AMOS Basic will almost certainly crash!

GET DISC FONTS (create a list of the disc fonts) 107

GET DISC FONTS '' •

This command is identical to the previous GET FONTS instruction except
that it only searches for fonts on the disc. These fonts are contained
i r. +. h G> F O KIT e -F ;:> 1 d o K c> 11 y a u ,- c. 11 v- t~ .-• r> +. b o a +. d i .JI c . I f y a u w i\ i-, t I <:> u -si <« y <:> u r

own fonts with AMOS basic, you'll need to copy these onto your normal
start-up disc. See the manual supplied with your Amiga for'details of

this procedure.

GET ROM FONTS (create a list of the roffl fonts)

GET ROM FONTS produces a list of the fonts which &re built into Amiga's
roffi chips,, At the present time there are just two of these fonts:
Eight-paint Topaz and nine-point Topaz.,

=F0NT$ (return details about the available fonts)

Returns a string of 38 chars which describes font number n. This
function allows you to examine the font list created by a previous call
to one of the GET FONT commands.

a* contains a list of characters which hold the name and type of your
font. If a font does not exist,, a* will be loaded a null value "",
otherwise a string will be returned in the following formats

Character Description ' 108

1-29 Font name
30-33 Font height
34-37 Identifier (set to either Disc or Rom)

See EXAMPLE 8.11!

SET FONT (choose a font for use by
the TEXT instruction)

SET FONT n

SET FONT changes the character set used by the TEXT command to font
number n. If the font is stored on the disc it will be automatically
loaded into your Amiga's memory. At the same time any previously sets
which are not in use will be removed,, See EXAMPLE 8.12.

SET TEXT (set text style)

SET TEXT style

Allows you to change the style of a font,. There are three styles to
choose from, "style" is a bit pattern in the following formats

Bit Effect

0 Underline By setting the appropriate bits in this
1 Bold pattern you can choose between a total
2 Italic of eight different text styles,,

=TEXT STYLE (return the current text style) \ 109

; s-TEXT STYLE

« This function returns the text style set from the SET TEXT command. The
r-psiilt in "s" is a bit-map in the same format as that used by SET TEX!.

-TEXT LENGTH (return the length of a section
of graphic text)

w=TEXT LENGTH(t*)

The TEXT LENGTH function returns the width in pixels of the character
string a* in the current font,, The width of a character varies
depending on the size of your fonts. In addition., proportional fonts
such as Helvetica assign different widths for each individual
character.

=TEXT BASE (return the current text base) ,

b=TEXT BASE \

This function returns the position of the baseline of your font. The [
baseline is the number of pixels between the top of a character and '
point it will be printed on the screen ,, 11's basica 11 y simi 1 ar to the
hot spot of a sprite or bob, , - \

Installing new fonts

If you wish to use your own fonts within AMOS Basic, you'll need to
install them onto a copy of your AMOS program disc. The basic procedure
is as follows:

- Copy the required font files into the FONTS; directory of your boot-
disc.

- Further information can be found in the Extra's manual supplied with
the Workbench 1 „3 upgrade., .

Troubleshooting

Problem: GET FONTS seems to ignore any of the fonts on the current 110
d isc.

Solution: You've propably removed the original boot disc from your
default drive. The Amiga's library routines expect to find
the FONTS; directory on your start-up disc. This can be
changed using the ASSIGN program in the UTILITIES folder,,

P ro b1ems G E T F 0 NT S c r ahe s th e A m i g a c o m p1e t e1y„
Solutions This problem can easily occur when you're creating programs

in run-only or compiled format. GET FONTS requires the
discfont,, library in the LIBS folder in order to work.

Problems The SET FONT command returns a "fonts not examined" error,,
Solutions Add a cal to GET FONTS to the start of your program,.

9sMATHS FUNCTIONS 111

AMOS Basic includes a wide variety of the more commonly needed
mathematical functions. To conserve memory, AMOS uses the standard
Amiga library routines., The appropriate libraries will bs loaded
automatically from your workbench disc: the first time you call one of
these functions in a particular session., You should therefore ensure
that the current disc contains the file MATH!RANS,,LIBRARY in the LIBS
folder. ,

Trigonometri c functions

The trigonometric functions provide you with a useful array of
mathematical tools. These can be used for a variety of purposes, from
education to the creation of complex musical wabeforms.

. • DEGREE (use degrees)

DEGREE r V .'-,-•

Generally all angles are specified in radians. Since radians are rather
difficult to work with, it's possible to instruct AHflS to accept angles
in degrees. Once you've activated this feature any subsequent calls to
the trig functions will expect you to use degrees.

RADIAN (use radian measure) .

R A D I A N • ;• •••••••. '

THe RADIAN directive informs AMOS that all future angles are to be
entered using radians - this is the default.

, ' =PItt (a constant PI) ,- ;

a t t = P I 8 '•- • '"' ''..'•• .;.

This function returns the number called PI which represents the result
of the division of the diameter of a circle by the circumference,, PI is
used by most of the trigonometric functions to calculate angels. Mote
that a $ character is part of the token name! This is to avoid clashes
with your own variable names.

= SIW .(sine)

s#=SIN(a) •• ' ' ";•

The SIN functions calculates the sine of the angle in n. Mote that the
function always returns a floating point number.

-•COS (cosine) 112
c«=C0S(a|I»3)

The cosine function computes the cosine of an angle,,

==TAN (tangent)

TAW generates the tangent of an angle. . ; '

-ACOS (arc: cos) \ .

c»=AC0S(n8) • .;.• , . ; { ' '•

The ACOS function takes a number between -1 and +1 and calculates the
angle which would be needed to generate this value with COS.

Note, we haven't provided you with ASIM, because it's not really .. '.••'.
needed, It can be readily com put (3d using the formula:

ASIN(X)=9O-ACQS(X5 s Rem Measured in degrees. . -, . ;
ASIN(X) = 1.5703-AC0S(X) i Re«i using radians i'-.'-'- • .

.. , l -ATAN (arc: tangent) * ' I , 113

tH=ATAN(ntt) ' . .. > ., ^ / . .

ATAN returns the arctan of a number. " .. '

=HSIN (hyperbolic sine) .

HSIK! computes the hyperbolic sine of angle a. "'. .

!- =HC0S (hyperbolic cosine)

c«=HC0S(a[tn) 1.

HCOS calculates the hyperbolic cosine of angle a.

, =HTAM (hyperbolic tangent.) , ; ..,_.

t»=HTAN(aL"H3) -.•' • . • : / . "" •-

HTAN returns the hyperbolic tangent of the angle a.

S ta nd a r d ma t h em at i ca1 func t i ons ; 114

=1.08 (logarithm)

rtt=L06(v[»])

LOG returns the logarithm in base 10 (log 10) of the expression in vf

~EXP (exponential function) • .

rf?=:EXP(ett) • ,'. ' ' . ; V

Calculates the exponential of eft,, Example: • :-

P r i n t E x p (1) , ' , / -.
(result : 2,71828) ' .• • . ' . , • : ' .

. , =LN (natural logarithm) . -

r 8 - L W (l H) ' , . - • . • ' • ' • ' • ' . • - - - •••• ...;

LM computes the natural of n a peri an logarithm of ltf. .'

; =SQR (square root) , , • - •

QR calculates the square root of a number.

=ABS (absolute value) : .:• 115

ABS returns the absolute value of v, taking no account of its sign

-INT (convert floating point number to An integer)

INT rounds a floating point number in v down to the nearest whole
integer. ••"• •

=S6N (find the sign of a number)

SGW returns a value of representing the sign of a number. There are
three possibilities,

• - 1 , if v is negative •
0,, if v is zero ..-•'•*•
1, if v is positive , , ;

Creating ran d o rn s e q u e n c e s

-•RWD (random number generation)

RND generates a random integer between 0 and n inclusive,, But if n is
less than zero, RND will return the last value it produced,, This can be
very useful when debugging one of your prog rains,,

RANDOMIZE (set the seed of a random number) . , 116

RANDOMIZE seed * : ': .: ' . ' , } .',,.

In practice, the numbers produced by the RKID function Are not really
random. They'ris compu ted in te rna 11 y us i ng a comp 1 ex mat hema ti ca i
formula. The starting point for this calculation is taken from a number
known as the "seed". This seed is set to a standard value whenever you
load AMOS Basic into the computer. So the sequence of numbers generated
by RND will be exactly the same every time you run your game!

The RANDOMIZE command allows you to set the seed value directly,, so
that the numbers would really look like random every time.

"seed" can be any value you wish. In order to generate a. true random
numbers, you need some way of varying the seed from game to game. This
can be achieved using the TIMER instructions

Randomize Timer ' ' *

TIMER is a Basic function which returns the amount of time which has
elapsed since your Amiga was switched on in the current session,, All
timings ars measured in units of a 50th of a second.

Manipulating numbers . ' '

11 AX (qet the maximum of two values)

r$=MAX(x$,y$) MAX compares two expressions and returns the largest.
These expressions can be composed of numbers or

strings of characters, providing you don't try to mix different types
of expressions in one instruction.

Print Max(10,4)
(result s .1.0) . . - . , '

=MIN (return the minimum of two values) . 117

r=MIN(x,y) • •• . . '

r$=MIN(x$5y$) This works the same way the -MAX does, except returns
the minimum value of compared numbers/strings.

SUiAP (swap the contents of two variables)

SWAP x,,y
SWAP x«',ytt
SWAP x$,,y$ Swaps the data between any two variables of the same

type.

; FIX (set precision of floating point output)

FIX(n) - ; • ' • • ' . . .". •• ;.'.. ,..; ; ..•; . .

Changes the way your floating point numbers will be displayed on the
screen or printer. There Are four possibilities,,

If G<n<3.6 then n denotes the number of figures to be output after
t h e d e c i m a 1 p o i n t,,

If r i > 16 the p ri n t out w i11 be propo r ti o n a1 a n d a n y t r a i1in g ze ro s w i11
be removed„

If n<0 Then all floating point numbers will be displayed in
exponential format, and the absolute value of n will
determine the number of digits after the decimal point.

If n~16 then the format will be returned to normal

Fix(-4) : Print PI#

"'•'-" ' DEF FN (create a user-defined function) , ' 118

DEF FN n a me [(1 i s t) j -- e x p r e s s ion • :

The DEF FN command lets you create your own user-defined functions
within an AMOS Basic prog ram. These can be used to compute commonly
needed values quickly and easily™ • .. -. .

"nane" is the name of the function you wish to define, "list" is a
set of variables separated by commas. Only the type of these variables
is significant. When you call your function, any variables you enter
with, will be automatically subsituted in the appropriate positions.

"expression" can include any of the standard All OS functions you wish.
Like all Basic expressions, it's limited just to a single line of prog.

., . • FKi (call a user--defined function)

F N n a m e [(v a r i a b 1 e 1 :i. s t) 3

FW executes a function defined using DEF FN. Examples

Def Fn Asin(X)=?0-Acos(X)
Degree

• Print Fn Asin (0,, 5)

10s SCREENS 119

The default screen

Whenever you run an AMOS Basic: program a default screen is created as
screen zero. This forms a standard display which will be used for all
your normal drawing operations,.

The system defaults to a 16-colour screen with dimensions 32()x200?

which can easily be altered from within your program. In addition,, you
can also define up to seven further screen with power SCREEN OPEN
command.,

D e f i n i n g a s c r e e n

SCREEN OPEN (open a screen)

QSCREEN OPEN n, w, h,, nc, mods

SCREEN OPEN opens a screen,, and reserves some memory it,, The new screen
will now be used as the destination of all subsequent text and
graphical operations in your program.

n is the identification number of the screen which is to be created
by this instruction. Possible values range from 0-7. If this screen
already exists, it will be totally replaced by your new definition.

w holds the width of the screen in pixels. This is not limited to the
physical size of your display. It's perfectly lefal to define extra
large screens which may be manupulated using SCREEN OFFSET.

h sets the height of your screen using the same system,, Providing
you've enough memory, you can easily create screens which are much
larger than the visible screen area. These screens can be used in
conjunction with all the normal screen operations. So you can construct
your images off-screen,, and scroll them into view with the SCREEN
OFFSET command.

nc requests the number of colours required for the new screen. The
range of available colours varies from 2 to 64 (EHB). You can also
access the Amiga's special HAM mode with a value of 4096.

"mode" allows you to choose the width of the individual points on the
screen. The Amiga supports screen widths of either 320 or 640 pixels.
You can select the required width by setting "mode" either LOWRES (0)
or HIRES ($8000).

Here's a list of the possible screen options along with an indication
of the amount of memory they consume.

Colours Resolution Memory Notes 120

2 320 x 200 8 k Paper=0 Pen-l Crsr=l, no flash
640 x 200 16 k

4 320 x 200 16 k Paper=l Pen=2 Crsr=3, flash=3
A, Jl O v< i7:0 C> "T 15 I "

8 320 x 200 24 k
640 % 200 48 k

16

32
64
4096

320
640
320
320
320

X

X

X

X

X

200
200
200
200
200

32 k This is a default screen 0

64 k
40 k
48 k Extra Half-Bright mode (EHB)
48 k Hold and Modify mode (HAH)

Note that the memory sizes in the table only apply to a standard
screen. If you create taller of wider screens, the amount of memory is
consumed will obviously be considerable greater., Screen zero is
equivalent tos . . .

SCREEN OPEN 0., 320,,200,16,, Low res \ :•

-.,.'.' SCREEN CLOSE! (erase a screen) ' -..,,' ' 121

SCREEN CLOSE n

SCREEN CLOSE deletes screen number n, and frees the memory for use.

AUTO VIEW ON/OFF (control viewing mode)

AUTO VIEW OFF , ' ; .

WHen you open a screen using SCREEN OPEN the new screen is usualyy
displayed immediately. This can be very incovenient during the
initialisation stages of your programs,,

The AUTO VIEW OFF command provides you with full control over the
updating process„ It turns off the automatic display system copletely.
You can then update the screen display at a convenient point in your
program using the VIEW instruction-

AUTQ VIEW ON activates automatic screen updating.

-:•••' : DEFAULT (reset screen to its default)

D E F A U L T •••..•

Closes all current open screens 3,nd restores the display back to its
original default setting. Example: \

/ ' Load I f f "ApiQS_.DATAsIFF/Affiospic.IFF%0
Wait Key •
Defaid

• • • . #

: • " VIEW (display the current screen settings)

V I E W • ',.'•. . ' . •"-•".

Displays any changes to the current screen settings at the next
vertical blank pe>riod. You only have to use this command when AUTOVIEW
is OFF.

Special screen modes

The colour of every point on the screen is determined by a value held
in one of the Amiga's 32 colour registers. Each register can be loaded
from a selection of 4096 different colours,,

Although 32 colours may seem rather a lot, particularly by ST
standards, it wasn't enough for the Amiga's designers. The easiest
solution would have been to increase the number of colour registers,
but this was quickly ruled out from reasons of cost,,

Instead, they invented two special graphics modes which cleveroly 12
exploited the existing registers to increase the maximum number of
colours on the screen.

You've propably encountered these modes already. They're the infamous
Extra Half Bright and HAH modes. AMOS Basic provides full support for
both HAM and Half Bright modes., Here's a brief explanation.

Extra Half Bright mode (EHB)

Doubles the maximum colours on the screen to a grand total of 64. It
works by generating two colours for each of the 32 possible colour
registers. • .

The first 32 colours load the colour value directly from one of the
r e g i s t e r s, E a c h register c o n t a i n s a v a 1 u e b e t w e e n 0 a n d 4 0 9 5 w h i c h s e t s
the prec i se shade of the f in a1 co1ou r.

The second group of colours, with numbers from 32 to 63, take one of
the previous registers and divide its contents by two. This produces 32
extra colours which are exactly half as bright as the normal colour-
registers,,

In order to exploit EHB mode to the full, it's necessary to load the
32 registers with the brightest shades in your palette,, This will
automatically generate a list of intermediate tones in colours 32-63.
Aside from t

Hold and Modigy mode (HAM)

The A ITI i g a ' s h a r d w are c u r r e n 11 y I i m its y o u t o a m a x i m u m o f s i x b i t
planes per screen. This allows you to display up to 64 different
colours on the screen at once. If you wanted to display a photograph
though, you'd require hunderds or even thousands of colours on the
s c r e e n • .

This was the problem faced by Jay Miner when he was designing the
Amiga's display system. His solution was to exploit a trick which has
been known by artists for centuries. If a professional aritst had to
take every conceivable colour on an assignment,, he would be faced with
an impossible task. It's therefore common parctice to mix the exact
shade on the spot, out of a small set of basic colours. This provides
millions of potential shades, without the need to carry several large
lorry loads worth of paint. The same technique can also be applied to a
computer screen. Instead of specifying each colour individually, you
can take an existing colour and modify it slightly. This increases the
number of available colours tremendously,, and forms the basis of the
Amiga's powerfl Hold And Modify mode.

Each colour value on the Amiga is created from a mixture of the three
separate components. These determine the relative strength of the

primary colours Red,, Green and Blue in the final colour, Possible
intenses range from 0 to 15,

Ham mode splits the'Amiga's colour values into four separate groups:

t Colour registers 0-15:; The first 16 colour take a value directly
froiTi a colour register. These colours are

treadted just like those on a standard 16 colour screen.

* Red components 16-31 s However,, if a point is set to a colour
n u in b e r i n t h e range 16 t o 31, t he c o 1 ou r

value is loaded from the pixel to its immediate left.
The Red component of this colour is now replaced with a
value from 0 to 15 which is calculated from the formula:

In tensity-Colour index - 16

t Green components 32-47; Similarly, a colour number from 32 to 47
takes the current shade, and changes the

green component,, The intensity of this component is set
to a value of colour •- 32n

* Blue components 48-63; These colour numbers grab the colour value
from the poi nt on the left of the curren t

pixel, and load a new blue component from your colour
number like so:

Intensity - Colour Index - 48 .'•..•

The colour of a particular point therefore depends on the colours of
all the points to the left of it. This allows you to create smooth
gradiations of colour which Are ideal for flesh tones. However, you
can't choose the colour of each point on the screen independently. In
practice, it takes a maximum of three pixies to shift from one colour
to another.

When the Amiga was first released, Ham initially was regarded as
little more than curiosity. Nowadays, the situation is very different,
with the advent of excellent Ham graphics packages such as Photon
Paint,,

AMOS allows you to perform the full range text and graphics
operations directly on to a Ham screen,, EXAMPLE 10.1 provides you. with
a simple example of how you can generate an entire screen in just a few
lines of Basic code.

Another point to consider, is that Ham screens ar& manipulated using *
the normal SCREEN) DISPLAY and SCREEN OFFSET commands. Here are some
simple guidelines to their uses

t The first point in each horizontal line should be set to a colour
number from 0 to 15. This will serve as the starting colour for all
the shades on the current line.

* Don't a 11 e m p t t o s u h j e c t y o u r H a m s c r e e n s t o h o r i z o n t a 1 s c r o 11 ing.,
If you try to scroll one of these screens, you'll get colour fringes
at the sides of your picture. These are generated by the changes in
the starting colours for each line. There are no such restrictions
to ver t i ca 1 s c ro 11 inq .

* !-' r i n g i n g e> •f -f a = - t« <= ̂ r> .» 1 «-, c> fc, «„ P .- <:> <J u ^ »»,1 L> r S3 c P: E E1-1 c; o F- Y .. T I > ts- -j> a 1 n I J. a i)

is to ensure that the border of your zone is drawn using a colour
from 0 to 15. This will ensure that your Ham screens will be redrawn 124

at their new position with their original colours,

Loading a screen

LOAD IFF (load an IFF screen from the disc)

LOAD IFF "filename"[„screen]

Loads an IFF format picture from the disc, "Screen" indicates the
number of the screen which is to be loaded with your picture. This
screen will be opened automatically for your use?,, if it didn't exist,
Anything already inside your screen will be totally erased.

To load the picture into the present screen, omit the "screen"
parameter altogether.

Examples .

Load Iff "Af!0S...DATA5lFF/Af10SPIC.IFF",i

Saving a screen - ,

SAVE IFF (save an IFF scree)

SAVE IFF "filename"[,compression] ;. •

Saves the current screen as an IFF picture file on the disc,
"compression" is a flag which allows you to choose whether your file
will be compacted before it's saved,, A value of one specifies that the
standard file compressiong system is to be employed and zero saves the
picture as it stands,, As a default all AMOS screens are compressed.

SAVE IFF automatically appends a small IFF "chunck" to your picture
file. This stores the present screen settings including SCREEN DISPLAY,
SCREEN OFFSET and SCREEN HIDE/SHOW. When you load this file back into
AMOS Basic it will be returned to exactly its original condition. This
extra IFF data will be completely ignored by external graphics packages
such as DPaint 3. • . '

Note that it's possible to save double buffered or dual pi ayfie Id
screens with this command. , .-/••'

Moving a screen • . 125

SCREEN DISPLAY (position A screen)

SCREEN DISPLAY n [, x. y,, w, h]

Once you have defined your screen with SCREEN OPEN, you'll need to
position it on your screen. Unlike most other computers, the Amiga is
capable of displaying a picture anywhere you like on the TV screen.
This can be easily exploited to nr-adut-e amazing " boun ,- i n g " s"oon

to perform these

Another aplication is to overlay several screens alongside each
other. This allows you to create your display out of a combination of
different screen modes.

"n" indicates the number of the screen to be positioned, "x" and "y"
specify the location of the screen in hardware coordinates.

The x coordinates of a screen can range from 0 to 448 and are
automatically rounded down to the nearest 16-pixel boundary. Only the
positions between 112 and 448 actually visible on your TV though, and
you are strongly advised to avoid using an x coordinate below 112.

The y coordinates of your screen can range between 0 and 312., The
visible range will largely depend on your TV or monitor, but you'll
propably find that coordinates between 30 and 300 are satisfactory for
the majority of systems.,

At the time of writing, there app'ears to be a minor bug in the
Amiga's HAM mode. These pictures cannot be displayed with a Y
coordinate of exactly 256. So set your coordinates to intermediate
values such as 255 or 257 instead. We're not sure if it's a hardware or
software fault yet but it won't restrict you by any means,

"w" holds the width of your screen in pixels. If this is different
from the original setting, only a part of your image will be shown,
starting from the top left corner of the display. Like the x
coordinates, the screen width will be rounded to the nearest 16 pixel
boundary.

Similarly, "h" sets the apparent height of the screen. Changing this
value will reduce the depth of your image™

Generally SCREEN OPEN will automatically select the display position
for you using a standard setting in the AMOS configuration file. If a
screen is larger than the display then AMOS sets the screen into
overscan,,

SCREEN DISPLAY provides you with a simple way of changing these
values from the default,, Any of the parameters x,y,h and w may be
omitted as appropriate. The unused values will be automatically
assigned to the default settings, and should be separated by commas,,

Screen Display 0,3.12,45.,, s Rem position the screen at 112,45.

When you Are positioning your screens, try to ensure that the screen
starts at the left of the display and ends towards -the right. This is
essential if the Amiga's hardware is to interpret your screen
correctly. In practice,, you may need to experiment a little to get the
precise effect you want. Fortunately,, the worst that can happen is that
you'll get a silly looking display. The Amiga won't crash if you make a
mistake,, here are some guidelines to help you along;

* Only a single screen can be displayed on each horizontal line. 126
However, you can safely place several screens on top of each other.
All will he well, providing only one of the screens visible.

There will always be a one pixel thick "dead zone" between each pair
of screens. This is generated by the copper list and is completely
unavoidable. The dead zone will be noticeable whenever you move a
« p r i { o b«,+. w.,,.,,r, LI-,,™ «K= ,„<».>,,.. A.., .»•, <„ x ,sv m p 1 m ., I ,- y n o v i n j t h e riinuae

pointer f rom t he ed i to r w in dow to the menu 1 :i.n e „ You s hou 1 d see a
small black line through your mouse pointer at the border between

the two screens.

SCREEN OFFSET (hardware scrolling)

SCREEN OFFSET n,x,y

The Amiga's display is not just limited to the visible dimensios of
your TV screen. There's absolutely nothing stopping you from generating
image s w h i c h a r e mu c h 1a r g er t han t he a c t u a1 s cr een„ 11's o bv i ous1y not
possible to display such pictures in their entirety,, but. you can easily
view a section of your image us i n g the SCREEN 0FFSET command.

11 n" is the number of the screen to be displayed,, x,,y measure the
offset from the top left hand corner of the screen to the starting
point for your display, x and y are specified in units of a single
pixel, so there's nothing stopping you from gene? rat ing some
delightfully smooth scrolls.

You can also use negative offsets with this instruction, allowing you
to display any part of the Amiga's memory on the screen. See
EXAUF'LE 10.2 for a full demonstration of this command.

Screen control commands 127

SCREEN CLONE (clone a screen) .

SCREEN CLONE n . •

The SCREEN CLONE command assigns a second version of the current screen
to screen number n. This clone uses exactly the same memory ares, as the
original screen.

Normally, the cloned screen is displayed at the same place as its
parent. However it can be manupulated separately using any of the
normal screen operations such as SCREEN DISPLAY and SCREEN OFFSET.

Since there's only a ^single* copy of the original screen data in
memory, you can't access a clone with the SCREEN command. You'll, get an
"illegal screen parameter" error if you rty. Another point to consider
is that any colour flash sequences you'ye set up on the original screen
will NOT be copied during the cloning operation,, See EXAMPLE 10.3.
Notice the use of the WAIT v'BL command. This ensures that the clone is
re positioned off-screen and keeps the movements running smoothly,,

I f y o u e x p e r i m e n t with S C R E E N C I... 0 ME,, y o u ' 11 q u i c k 1 y find t h a t t h ere's
a real limit to the amount of movement you can perform without spoiling
the effect completely. Even something as trivial as an extra
calculation to your movement routine can often introduce an
unacceptable delay into your animations.

The screen display can also be adjusted directrly from the AMAl-
an i mat ion language. This is capable of animating large numbers of
screens smoothly a n d e a s i 1 y,, S e e E X A 11 PL E .1.0.4 f o r a d e m o n s t r a t i o n ,.

DUAL PLAYFIELI) (combine two screens
into dual piayfield)

DUAL PLAYFIELI) screen!, screen2

The Amiga's dual playfield mode allows you to display two complete
screens simultaneously at the same x and y coordinates. It's almost as
if you'd drawn eaxh screen on cellophane and overlayed them on top of
each ether. Each screen can be manipulated totally independently,, You
can exploit this to produce a smooth parallax effect which is ideal for
screen scrollinq games such as Silkworm,,

The two components of a dual play-field Ars treated just like any
other AMOS screen and can be written to in the normal way. They can
even be animated within AHAL or double buffered.

"screenl" and "screen2" refer to screens which have been previously
defined with the SCREEN OPEN command. Only certain screen combinations
&re acceptable. Both screens MUST use the same resolution, as it's
illegal to use hi res(mean ing actually liedRes 5 and lowres in the same
playfield„

Here is a list of the possibilities , 128
Screen 1 Screen 2 Motes

ttof colours ftof colours '

2
4
4
8
8

2
2
4.
4
8

LowRes only
LowRes only

Although the colour ranges Are predefined,, the sizes of the two screens
can be completely different. By creating a background screen which is
larger than the foreground you can create a delightfully realistic
parallax effect.

The colours of these screens &rs all taken from the palette of
screen! with colour zero being treated as transparent.

Screen Colour indexes (from screen 1)

1 0 - 7 ' , • . . - • . •

2 8 - 15 ' ,

When you are drawing to the second screen., AMOS Basic will
a u. t o m a t i c a 11 y c o n v e r t y o u r c o 1 o u r i n d e x t o t h e a p p r o p r i a t e n u m b e r
before using it. So INK 2 will use colour nine from the first palette.

This conversion process does not apply to the assignment statements
such as COLOUR or PALETTE. It's important to remember this when you &re
changing the colour settings, otherwise your new colours will not be
reflected on the actual screen,. Always make "screenl" the current
screen before changing your colour assignments,,

There ars a couple of important opints which you must be aware of
before setting up a dual playfield screens

% The screen offsets for both screens must never be set to zero,
t If you set a dual piayfield screen up and then want to position

it with SCREEN OFFSET be sure to specify dual screen 1 not the

DUAL PLAYFIELI) is an extremely powerful instruction,, A full

cieiiiostration can be found in EXAMPLE 10., 5,,

DUAL PRIORITY (choose order of dual playfiek! screens)

DUAL PRIORITY screen 1,screen2

The first screen of a dual plavfield is normally displayed directrly
over the second. The DUAL PRIORITY command allows you to change this
order around so that screen? appears in front if screen 1

WARNING! This instruction only changes the order of the display. It
has $N0# effect on the screen organization. The first screen in the
dual playfield list should therefore still be used for all colour
assignments and with SCREEN DISPLAY.,

SCREEN (set current screen) ,-'... 129

SCREEN n . •

The SCREEN command allows you to direct all graphical and text
operations to screen number n„ .

=SCREEM (get the current screen tt)

s=SCREEN

Returns the number of the curren11y active screen.

SCREEN TO,FRONT (moves screen to front of display)

SCREEN TO FRONT [s] ' . '

This instruction moves screen "s" to the front of the TV display,, If
the parameter is omitted,, then the current screen will be used instead,,

Note: if the AUTO VIEW system has been turned off,, you'll need to call
the VIEW command before the effect will be visible on the screen,.

SCREEN TO BACK (move screen to back of display)

SCREEN TO BACK L'n.1 ' ' \

SCREEN TO BACK moves a screen to the background of your display. If
there is another screen at the same coordinate this will now be
displayed in front of the selected screen,,

SCREEN HIDE (temporarily hide a screen)

SCREEN HIDE Lnl . , . .:.

Removes a selected screen from view copletely,, This screen can be

redisplayed using a call to SCREEN SHOW. If n is omitted., this
instruction will hide the current screen.

SCREEN SHOW (restore a screen) - 130

SCREEN SHOW [n]

Screen SHOW returns a screen onto the display after it has been hidden
with the SCREEN HIDE command.

=SCREEN HEIGHT (return height of screen)

h=SCREEN HEIGHT [n] . • ' •

Returns the height of an AMOS screen,, If you don't include the
parameter n, the height will be returned for the current screen,,

=SCREEN WIDTH (return the width of screen)

w=SCREEM WIDTH En] '

SCREEN WIDTH retrieves the width of either the current screen or screen
number n. Examples

Print Screen Width

=SCREEN COLOUR (return the number of colours)

c=SCR£EN COLOUR v '

Returns the maximum numbers of colours in the currently active screen.

=SCIN (returns screen number at a selected position)

Returns the number of screen which is underneath the ^'hardwares-
coordinates x,y. If this screen does not exist, then s will be loaded
w i t h a n e g a t i v e v a 1 u e (n u 11).

SC1N is normally used in conduction with the X MOUSE and Y MOUSE
functions to check whether the mouse cursor has entered a particular
screen- Examples .

Print Scin(X Mouse. Y Mouse)

Defining the screen colours • 131

DEFAULT PALETTE (load screen with standard palette)

DEFAULT PALETTE cl, c2, c:3, , . c6, ,,-> up to 32 colours

This command simplifies the process of opening many screens with the
same palette,, It defines a list of colours which will be used for all
subsequent screens which you create with the SCREEN OPEN instruction.
As usual,, the allowable colour values range from $000 to $FFF.

GET PALETTE (set the palette from a screen)

GET PALETTE n [,mask] -

The GET PALETTE instruction copies the colours from screen n and loads
them into the current screen,, This c&\i be very useful when you're
moving information from one screen to another with SCREEN COPY, as it's
usually vital that both the source and destination screens share the
same colour settings.

The optional "mask" parameter allows you to load just a selection of
the colours,, See GET SPRITE PALETTE for full details of mask.

Clearing the screen .

C L S (c 1 e a r t h e s <:: r e e n)

CLS erases all or part of the current screen,. There AVB three possible
formats of this command:

CLS

Clear s t h e c u r r e r \ t s c r e e n b y f i 11 i n q :i. t w i t h c o 1 our z e r o a n d c 1 e a r s a n y
windows which may have been set up.

CLS col

Fills your screen with colour col.

CLS col, xl ?y:i. to x2,y2 .

Replaces the rectangular region at coordinates xl , yl,, x2,,y2 with a block
of colour col,, Col can take any value from 0 to the max,, number of
available colours. xl., y.1., x2,y2 hold the coordinates for top left and
bottom right corners of the &re& to be cleared by this command.
Example:

Cls s Circle 100,09,09 s Cls 1,50,50 To 150,150

Manipulating the contents of a screen .1.32

SCREEN COPY (copy sections of the screen)

SCREEN COPY scrl T O sc:r2 ' -

SCREEN COPY scrl,, xl,yl, x2 5y2 TO scr2,x3,y3 [..mode]

SCREEN COPY snakes, it possible to copy large sections of a screen from
one p1ace to another at amazing speed-

"scrl" holds the screen used as the source of your image- This can be
either a standard screen number or the number of a logical or physical
screen generated using the LOGIC and PHYSIC commands.

"scr2" selects an optional destination screen into which this data
will be copied. If it's omitted,, the Area will be copied into the
current screen,.

xi,yl and x2:,y2 hold the dimension of a rectangular source area, and
x3,y3 contain the coordinates of the destination,, There Are no
limitions to these coordinates whatsoever. Any parts of your image
which lie outside the current screen ares, will be automatically clipped
as appropriate.

The optional "mode" parameter chooses which of the 255 possible
blitter modes will be used for your copying operation. These modes
determine how your source and destination areas will be combined
together on the screen,, The mode is set using a bit-pattern in the
f o 11 o w i n g f o r m a t:

n o d e B i t

A
5
6
7

S o u r c e H i t

0
0

• . i
i

Destination sett

0
i
0
1

Note that the bottom four bits in the pattern e,re not used by this
instruction and should always be set to zero.

Each bit in "mode" represents a single combination of bits in the '• ;
source and destination areas. If a mode bit is set to one, then the
associated bit on the screen will also be loaded with a one, otherwise
the result will be zero,,

i

In order to select the correct drawing mode for you application, you '<
simply decide which combinations should result in a one and set the .
appropriate bits in the "mode" parameter accordingly,,

Supposing you only wanted to set a bit on the screen if both the . '
source and destination bits were the same. You would look the table for f
the points where your requirement was satisfied. This would produce the 133 |
following vaue for "mode": '

2 1 0 0 1 0 0 0 0 • • ' " • ; • ',

If you're not familiar with binary notation, you may find this command
a little opaque. Rather than boring you silly with an explanation of . j
binay we'll now provide you with a detailed list of the more common !
requirements along with the associated bit-maps.

Mode Effect . Bit-pattern , !

REPLACE Replaces the destination with a direct 2:1.1000000
c o | j y o f t h e sou r c e i m a q e (d e f a u 11),,

INVERT Replaces the destination image by a 200110000
reversed copy of the source image.

AND Combines the source and destination 210000000
with a logical AND operation.,

OR OR's the source with the destination 211100000

XOR Combines the source and destination 201100000
Are A with an Exclusive OR,

Technically-minded users should note that SCREEN COPY combines the
source and destination using blitter areas B and C and that blitter
area A is not used by the system at all.

Scrolling the screen

DEF SCROLL (define a scroll zone)

DEF SCROLL n,xl,yl to x2,y2.!dx .dy

Allows you to define up to 16 different scrolling zones. Each of these
zones can be associated with a specific scrolling operation which is
determined by the variables dx and dy,

n l"i o 1 d s t h e n u m b e r o f t h e z o n e a n d c a n r a n g e f r o m 1 t o .1.6 „ x 1, y 1
refer to the coordinates of the top left-hand corner of the a.re& to be
s c r o .1.1 e d a n d x 2, y 2 t o t h e p o i n t d i a g o n a 11 y o p p o s its.

dx signifies the number of pixels the zone will be shifted to the
right in each operation. Negative numbers indicate that, the scrolling
will be from right to left, and positive numbers from left to right.

Similarly, d y holds t h e n u m b e r o f p i x e 1 s t h e i o n e w :i. 11 b e a d v a n c e d u p
or down during the scroll. In this case negative values of dy are used
to indicate an upward movement and positive values a downward motion.,

SCROLL (scroll the screen) '

SCROLL n

The SCROLL command scrolls the screen using the settings you have
specified with the DEF SCROLL instruction, n refers to the number of
the zone you wish to scroll. ,

Load Iff "AMOS DATA:IFF/Frog Leap.IFF",2
Def Scroll 1,0,0, to 320,200,1,0
Do . ;.

S c r o l l 1 •,.... '".. - . ' • • • .

Loop

Larger examples can be found in EXAMPLE 10.7 and EXAMPLE 10.8,, The
variable s holds the number of points the picture will be moved during
each SCROLL. Mote the use of screen switching to improve the quality of
the motion,,

Screen switching -• :

In order to produce the smooth movement effects found in a computer
game, it's necessery to complete all the drawing operations within a
time span of no more than a 15th of a second. This represents a real
challenge for the fastest computer,, and it's often impossible to
achieve erven on the Amiga. If the animation is complex, your graphics
will therefore tend to flicker annoyingly as they are being drawn.

Fortunately,, there's a solution at hand which has been succesfully
exploited in the vast majority of modern arcade games. This ^screen
switching* technique can easily generate flicker-free screen animation
using just a fraction of Amiga's computing power,.

T h e fa a s i c i d e a i s e x t r e m e 1 y s i in p .1. e „ I n s t e a d of constructing y o u r
images on the actual screen, you perform all your drawing operations on
a separate logical screen, which is copletely invisible to the user,,
This is distinct from the tphysical screen* which is currently being
displayed on your TV. 0n ce t he g r aphi cs have been complated ,, you can
then swap the logical and physical screen to produce a smooth
transition between the two screen imagesn The old physical screen now
becomes the new logical screen, and is used to construct the next
picture in your sequence.,

At fist glance, this process looks pretty complicated, but it's all
performed automatically by the AMOS Basic: DOUBLE: SUFFER''command „ This
•forces all drawing operations to be performed directly on the logical
screen without affecting the current display. All you need to do within
your program is to synchronise your drawing operations with the screen
switches. This can be achieved with the help of SCREEN SWAP
instruction.

SCREEN

SCREEN SWAP [n]

SWAP (swap the logical and physical screens)

SCREEN SWAP swaps the physical and logical screens,, This enables you to
instananeously switch the physical display between the two screens,,

If you're using DOUBLE BUFFER,, these screens will have been created
for you already. However, you will need to switch off the automatic
screen switching system with BOB UPDATE OFF,, as otherwise the screens
will be swapped 50 times a second., and will interfere with your own
drawing operations. It's also necessary to kill the autoback feature
with AUTOBACK OFF. This normally copies your graphical operatains onto
both physical and logical screens. It's useful when you wish to combine
simple graphics with moving bobs,, but it destroys the effect of your
screen switching operations totally.

As an illustration of the power of this command,, have a look at the
programs EXAMPLE 10.9 and EXAMPLE 10.10.

135

--L0GBASE (return the address of part of
part of the logical screen) ;

address=LQGBASE(plane) '

The L06BASE function is aimed at expert programmers who wish to access
the Amiga's screen memory directly,, "plane" referes one of the six
possible bit-planes which make up the current screen. After LOGBASE has
been called, "address" will contain either the address of the required
bit-plane, or zero if it doesn't exist.

t h e cu rr e nt screen)

address=PHYBASF:

PHYBASE returns the address in memory of bit-plane number "plane" for
the current screen. If this plane does not exist, then a value of zero
will be returned by this function,. Example:

Loke F'hybase(O) ,0 s Rem pokes a thin line directly onto the
screen„

=PHYSIC (return identifier of
the physical screen)

=PHYSIC
=PHYSIC(s) . • - • • • '

The PHYSIC function returns an identification number for the current
physical screen. T h i s n u m b e r a 11 o w s y o u t o d :i. r e c 11 y a c c e s s t h e p h y s i c a 1
image which is being displayed by the double buffering system.

The result of this function can be substituted for the screen number
in the ZOOM, APPEAR and SCREEN COPY commands.

"s" is the number of an AMOS screen. If it's omitted,, then the
present screen will be used instead. Don WOT confuse with the LOGBASE
function.

• " =L0GIC (return identifier of ' 136

! the logical screen)
: =L0GIC

=L0GIC(s)

Returns an identification number of a logical screen., This can be used
in conjunction with the SCREEN! COPY, APPEAR and ZOOM commands to change
your image off-screen, without affecting the current display.

i ; ;•• •• :

j Screen synchronisation

Like most home computers the AMIGA uses a memory-mapped display,, This
is a technical term for a concept you Are almost certainly already .
familiar with,, Put simply, a memory-mapped display is one which uses
special hardware to convert en image stored in memory into a signal
which can be displayed to your TV screen,, Whenever AMOS Basic accesses
the scren it does so through the medium of this screen memory.,

The screen display is updated by the hardware every 50th of a second.
Once a screen has been drawn, the electron beam turns off and returns
to the top left of the screen,. This process is called the vertical
blank period VBL. At the same time, AMOS Basic performs a number of
important tasks, such as moving the sprites and switching the physical
screen address if it has changed. The actions of instructions such as
ANIM or SCREEN SWAP will therefore only be fully completed when the
screen is redrawn,.

Since a 50th of a second is a quite long time for AMOS E<asic., this
can lead to a serious lack of coordination between your program and the
screen, which is especially notice-able in tight program loops. The best
way of avoid ino this is dif-ficuHf, A« +.<> w,n».-t until ths screen has
been updated before you. execute the next Basic, command.

WAIT VBL (wait for a vertical blank)

The WAIT WBL instruction halts the AMIGA until ne next vertical talanl
period. It is commonly used after either a PUT BOB insturction or a
SCREEN SWAP

Special effects

APPEAR (fade between two pictures)

APPEAR source TO destination, effect [,pixels!

The APPEAR command enables you to produce fancy fades between the
"source" and "destination" screens. Source and destination are simply
the numbers o f screens you've p r e v i o u s 1 y o p e n e d u s i n g S C R E El N 0 P EN. Y o u
can also substitute the LOGIC and PHYSIC functions in these positions
if required.

"effect" determines the type of fade which will be produced by this
insturction,, The size of this parameter can vary from i to the number
of pixels in you current screen,,

"pixels" specifies the number of points which &re to affected.
Normally this value is set to the TOTAL screen area, but you can reduce
it to fade only a part of the screen. All screens are drawn in strict
order from the top of the screen to the bottom,.

The appearance of your fades will naturally vary depending on the
screen mode you Are using,, A program is provided in EXAMPLE .1.0.11 to
allow you to experiment with the various possibilities.

FADE (blend one or more colours _. 13?
to new colour values)

FADE speed [„colour list] ' ^
FADE speed TO screen [,,mask] •• : '

The FADE command allows you to smoothly change the entire palette from
one set of colours to another. This can be used to generate
professional-looking fade effects for your loading screens.

The standard version of the instruction takes the current palette,,
and slowly dissolves the screen colours to zero. Each colour value is
successively reduced by one until they reach zero,, Example;

Fade 15 s Wait 225 -

"speed" is the number of vertical blank periods that must occur
before the next colour change is performed,,

Since the fadig effects are executed using interrupts;, it's best to
wait until the operation has completely finished before proceeding to
the nexy Basic instruction. The time taken for the fade WAIT can be
c a1c u1a t e d b y t hs f or mula:

wait value =: fade speed * 15

Fade c.Afi be extended to generate a new palette directly from a list of

Fade 15,$100,$200,$200,$300

Any number of colours can be specified in this instruction,, up to the
maximtiHi allowed in the current graphics mode., Like most AMOS commands,
it's possible to omit selected parameters completely,, These colours
will be totally unaffected fy the FADE command.

Fade 15,, ,,*100,$800,$F00

The most powerful form of FADE smoothly transforms the colours from the
current screen into a palette taken from an existing screen.

Fade speed TO s C,mask]

The present colours are slowly converted into the palette of screen s.
It's also possible to load the palette from the sprite bank using the
same technique. Simply use a negative value for the screen number s.

"mask" is a bit-pattern which specifies which colours should be
loaded. Each colour is associated with a single bit in this pattern
numbered from 0 to 15,, If a bit is set to 1, then the relevant colour-
will be changed. See EXAMPLE 10.3.2. -

FLASH (set flashing colour sequence) 138

This command gives you the ability to periodically change the colour
assigned to any colour index., It does this with an interrupt similar to
that used by the sprite and the music instructions. The format of the
flash instruction is;

FLASH index ,"(colour, delay)(colour ..delay) (colour, delay),,„."

"index" is the number of the colour which is to be animated. Delay is
set in units of a 50th of a second.

Colour is stored in the standard RGB format (See COLOUR) for mode
details. The action of FLASH is to take each new colour from the list
in turn, and then load it into the index for a length of time
specified by the delay. When the end of this list is reached, the
entire sequence of colours is repeated from the start., Note that you
are only allows to use a max. of 16 colour changes in any one FLASH
instruction,, Here is a small examples

Flash l.,i! (007,10) (000,10)" .

This alternates colour number 1 between blue and black every 10/50th of
a second »

FLASH OFF

Turns off the flashing. Note that on start-up, colour number 3 is
automatically assigned a flash sequence for use by the cursor,, It's a
good idea to turn this off before loading any pictures from the disc.

SHIF T UP (co1ou r rot a t i on)

SHIFT UP delay,,first, last,flag

The SHIFT UP command rotates the values held in the colour registers
'from the "first" to "last". The "first" colour in the list is copied

into the second,, and the second into the third,, and so on, until the

"last" colour in the series is reached,,

Each AMOS screen can have its own unique set of colour animations.
Colour shifts can be used to create amazing hyperspace sequences
similar to those found in Captain Blood and Elite. Since these
animations are performed using interrupts, they can be executed while
your program is running, without affecting it in the slightest.

"delay" is the time interval between each stage of the rotation,
measured in SOths of a second.

"flag" controls the type of rotation,, If it's ste to one,, the last
colour index in the list will be copied into the first, and the first •
to the last. So the colours will rotate continuously on the screen.
When "flag" is set to zero, the contents of the first and last indexes
will be discarded, and the region between first and last will be
replaced by a copy of the first colour in the list,, For examples

SHIFT UP 100,1,15,1

SHIFT UP .10,, 1,15,0 • " " .

SHIFT DOWN (colour rotation) 139

This is similar to the SHIFT UP,, except it rotates the colours in the
opposite direction.

SHIFT OFF (stops col,, rotation for the current screen)

S H I F T O F F ' • • ••. . '

Immediately terminates all colour rotations produced by the SHIFT UP or
SHIFT DOWN instructions

SET RAINBOW (define a rainbow effect)

Defines an attractive rainbow affect which can be subsequently
displayed using the RAINBOW command. It works by changing the shade of
a colour according to a series of simple rules.

"n" is the number of your rainbow,, Possible values range from 0 to 3.
"colour" is a colour index which will be changed by the instruction,.
This colour can be assigned a different value for each horizonal sreen
line (or scan line). Mote that only colours 0-15 can be manipulated
using this system.

"length'1 sets the size of table to store your colours. There's one
entry in this table for each colour value on the screen. The size of
this table can range from 16 to 54400,, If "length" is less than the
p h y s i c a l H cs i g h -t of y o *.t r r - «i n. n b T.t w « ':. h c? n I h e? c: o 1 O u r p -rt t. t. <•? 1" O W X 1 X U t?

repeated several times on the screen.

The r$,,q$,b$ command strings, progressibely change the intensities of 140
the red., green and blue components of your final colour,, These values
are loaded into a special colour table., Each colour in the table
determines the appearance of a single horizontal scan line on the
screen.

At the start of the rainbow, all the com portents in your colour 3. re
initially loaded with a value of zero. This will be changed according
to the information held in the colour table.

Any command string may be omitted if required,, but you'll still have
to include the quotes and the commas in their expected positions.

Each string can contain a whole list of commands. These will be
cycled continually to produce the final rainbow pattern,, The format is:

(n . . s t e p , c o u n t) . . . • • • .

"n" sets the number of lintes to be assigned to a' specific colour value
in the rainbow. Increasing this number will change the height of each
individual rainbow line.,

"step" holds a number to be added to the component. This number will
be used to generate the colour of the succeeding line on the screen,, A
positive step will increase the intensity of colour component,, and a
negative value will reduce it.

Whenever a particular component exceeds the maximum of 15, a new
va 1 ue wi 11 be ca 1 cu 1 a ted f rom t he formu 1 a:

new component = old component Mod 15

"count" is the number of times the current operation is to be repeated.
The best way to demonstrate this command is with an examples

Set Rainbow 0,1 .,64,," (3,2,8)",,"",'"' ,
Rainbow 0,, 56,1 ,,255 ..'/,'
Wait Key .

This creates a new rainbow with number zero using colour index one. As
you can see, SET RAINBOW only defines your rainbow. In order to display
it on the screen you need to make use of the RAINBOW command.

The rainbow effects first loads your colour with a value of zero.,
E v e r y four s c a n -1 i n e s,, t h e r e d c o m p o n e n t w i 11 b e a u t o m a t i c a 11 y
incremented by two. So the contents of colour zero will progressively
change from $000 to $EQ0« WHen the component exceeds the maximum of .1.5,
its remainder will be calculated, and the colour will be returned to
its starting point (zero). The pattern will now be repeated down the
screen„

By defining a separate pattern for eaxh of the red,.green and blue
components of your colour, you can easily generate some starling
patterns on the screen. Since each rainbow only uses a single colour
index, there's nothing stopping you from creating the same effects
using just two colour screens. These Are ideal from the backgrounds of
an arcade game, as they consume very little memory. Example:

, . Screen Open 0,320,256,2,Lowres
Set Rainbow 0,1,128, "8,1,8)", "(8,1,8)".,"" , <••
Rainbow 0.1,30,128

Colour 1,0 ; Curs Off : Cls 1 : Flash Off
Locate 0,2 s Centre "Amos Basic" : Wait Key

For further demonstration of the superb effects that can be achieved
with this instruction load up EXAMPLE 10.13,,

Rainbows can also be animated using a powerful interrupt system. See
the section on AHAL for more details.

RAINBOW-(create a rainbow effect)

RAINBOW n,base,>\,h

Displays rainbow number n on the screen,, If AUTOVIEW is set to OFF,, the
rainbow will only Appear when you next call the VIEW command..

"base" is an offset in the first colour in the table you created with
SET RAINBOW, Changing this value will cycle the rainbow on the screen.

y holds the vertical position of the rainbow in hardware coordinates.
The minimum calue for this coordinate is 40,, If you attempt to use a
coordinate below this point, the rainbow will be displayed from line 30
onwards,,

h sets the height of your rainbow scan lines.

Rainbows s.re totally compatible with the AMOS system including bobs
and sprits. However, don't attempt to rainbow a colour which is
currently being changed using the FLASH or SHIFT instructions, as this
will lead to unpredictable screen effects.

Note that only a single rainbow effect can be displayed on a
particular scan line, even if they use different colours on the screen.

Normally the rainbow with the highest screen position will be
displayed first. But if several rainbows start from the same scan line,,
then the rainbow with the lowest identification number will be drawn in
front of the others..

=RAIN (change the colour of an .• •
individual rainbow line) - ,

RAIN(n, line) :~c
c=RAIN(n,line)

This is the most powerful of all the rainbow creation commands, as it
allows to change the colour of an individual rainbow line to any value
you like. *'•.•.•.-•

n is the number of the rainbow you wish to access, "line" is the
individual scan line to be changed,, Examples

Curs Off s Centre "Securitate Stinks!" ; ,
Set Rainbow 1,1,409?,"","","" . '
For Y^O To 4095'

Rain(.1.;,Y)=Y . '
Next Y .
For 0=0 to 4095--255

Rainbow 1,0/40,255.
hie x * C

Wait Key - ;' ..

ZOOM (magnify & section of the screen)

ZOOM source,, xl ,yl 5x2,y2 TO clest, x3,y3, x4,y4

ZOOM is a simple instruction which allows you to change the size of any
rectangular region of the screen..

"source" is the number of a screen from which your picture will be
taken. You can also use the LOGIC function to grab your image from the
appropriate logical screen. The rectangular a.reA to be affected by this
instruction is entered using the coordinates xl,yi,x2,y2. "dest" holds
the destination screen for your image.. Like the source, it can he
either a screen number, or a logical screen specified using LOGIC,

The dimensios of this screen are taken from the cordinat.es x3,y3 and
x4,,y4,, These hold the dimensios of the rectangle into which the screen
segment will be compressed.

The effect of this instruction depends on the relative sizes of the
source and destination rectanges.. The source image is automatically
resized to fit exactly into the destination rectangle. So the same
instruction can be used to reduce or enlarge your images as required.

See EXAMPLE 10.14 for a further demonstration.

Changing the copper list

Ths Amiga's co-processor (copper) provides total control over the
appearance of every line on your screen. This copper is a separate
processor with its own internal memory and unique set of instructions.
By programming the copper it's possible to freely generate a massive
variety of different screen effects. Normally the copper is managed
automatically by the AMOS system. Each of the available copper effects
can be performed directly from within AMOS Basic without the need to
indulge in complicated machine-level programming. In practive these
intructions will be more*than sufficient for the vast majority of
applications. •

Obviously, no one can think of everything though. Expert programmers
may wish to access the copper directly to create their own special
screen modes,,

Be warned! The copper list is notoriously difficult to prograiii, and
if you don't know precisely what you are doing, you'll almost certainly
crash your Amiga. Before embarking on your copper experiments for the
first time, you are therefore adviced to read one of the many reference
books on the subject. A good explanation can be found the "Amiga System
Programmers Quite" from Abacus.

COPPER OFF (turn of the standard copper list) 143

COPPER OFF

Freezes the current AMOS copper list and turns off the screen display
copletely. You can now create your own display using a series of COP
M o u E: A .-, d c a P u A i T i.-, ™ i•. K- ... <= -t A „ r.». ,

As a default, all user-defined copper lists &re limited to a maximum

of 12k. On average,, each copper instruction takes up two bytes. So
there's a space for around 6000 instructions,, This may be increased if
required, using a special option from the CONFIG utility.

Note that all copper instructions Are written to a separate logical
list which is not displayed on the screen. This stops your program
corrupting the display while the copper list is being created.. To
activate your new screen, you'll need to swap the physical and logical
lists around with the COP SWAP command.

It's also important to generate your copper lists in strict order,,
starting from the top left of your screen and progressing downward to
the bottom right. See EXAMPLE: 10.15,

COPPER ON (restart the copper list)

COPPER ON

Restarts the Al'iOS copper list calculations and displays the current
AMOS screens.

COP HOVE (write a MOVE instruction into
the logical copper list)

COP MOVE addr,value

Generates a MOVE instruction in the logical copper list.

"addr" is an address of a 16 bit register to be changed. This must
lie within the normal copper DATA ZONE ($7F-*1BE). "value" is a
word-sized integer to be loaded into the requested register.

COP HOVEL (write a long MOVE instruction
into copper list)

COP HOVEL addr,value

This is identical to the COP MOVE,, except that "addr" now refers to a
32-bit copper register, "value" contains a long word intereger.

COP WAIT (copper WAIT instruction)

COP WAIT x,y [,x mask, y mask] ;

COP WAIT writes a WAIT instruction into your copper list. The copper
waits until the hardware coordinates x.y have been reached and returns
control to the main processor. Note that line 255 is automatically
managed by AMOS. So you don't have to worry about it at all.

x mask and y mask are bit maps which allow you to wait until just a
certain combination of bits in the screen coordinates have been set. As
a default both masks are automatically assignet to tiFF.

COP RESET (reset copper list pointers)

COP RESET

Restores the address used by the next copper instruction to the start
of the copper list.

-COP LOGIC (address of copper list)

addr-CGP LOGIC

This function returns the absolute address in memory of the logical
copper list. This allows you to poke your COPPER instructions directly
into the buffer, possibly using assembly language,,

Hints and tips

Before creating a screen with a user defined copper list,, you'll
first need to allocate some memory for the appropriate bit-maps.

Although you can use RESERVE for this purpose, it's much easier to
define a dummy screen with the SCREEN OPEN command instead,, The copper
registers can be loaded with the addresses of the required bit--maps
using the LOGBASE function.

You'll now be able to access your screen using all the standard AMOS
drawing features., In order to reserve the correct amount of memory, set
the number of colours to the MAXIMUM used in the new screen,, This may
be a little wasteful, but simplifies things enormously, •

* It's perfectly acceptable to combine user-defined screens with AMOS
bobs. If you're using double buffering though, you'll have to define

a separate copper list for both the logical and physical screens. This
may be achieved using the following procedure?

1 Define your copper list for the first screen
2 Swap the logical and physical copper lists with COP SWAP
3 Swap the physical and logical screens with SCREEN SWAP
4 Define your copper list for the second screen

This will ensure that your bobs will updated correctly on your new
screens. All the norm a 1 A110 S c o m m a n d s c a n b e u s e d i n c 1 u d i n a A M A1

11; HARDWARE SPRUES

One of the biggest attractions of the Commodore Amiga is its ability to
produce high quality games which rivial those found on genuine arcade
machines. This can be amply demonstrated by terrific programs such as
Ba111e Squad ron and E1i m i nator „

Now, for the first time., all these amazing features <nre at your
f i n g e r t i p s! AMOS Basic prov i d es y ou w i t h c omp1e t e c o nt ro1 ove r t he
Amiga's hardware and software sprites,, These sprites can be
effortlessly manoeuvred with the built-in AMAL animation language,, so
you don't have to be a machine code wizard in order to create your own
stunning arcade games,,

Hardware sprites are searate images which can be automatically
overlayed on the Amiga's screen,. The classic: example of a hardware
sprite is the mouse pointer,, This is completely independent of the
screen, and works equally well in ail the Amiga's graphics modes.

Since sprites don't interfere with the screen background, they are
perfect for the moving objects required by an arcade game. Not only are
they blindingly fast, but they also take up very little memory,, So when
you're writing an arcade game, hardware sprites should always be at the
top of your list* -

Each sprite is 16 pixews wise and up to 255 pixels high,, The Amiga's
hardware supports a maximum of eight three-colour sprites or four
fifteen-colour sprites. Colour number zero is transparent - that's the
reason for the odd colour ranges,,

At first glance? these features don't seem particulary impressive,,
But there are a couple of useful tricks which can increase both the
numbers and sizes of these sprites beyond recognition,,

One solution is to take each hardware sprite and split it into a
number of horizontal segments. These segments can be independently
positioned,, allowing you to apparently display dozens of sprites on the
screen at once. Similarly, the width restriction can be exceeded by
building an object out of several individual sprites. Using this
technique it's easy to generate objects up to 128 pixels wide.

Until recently the only way to exploit these techniques was to delve
i n t o the mysterious w o1rd of 6 8000 ass e mb1e r 1a ng u a g e. So y ou ' 11 b e
delighted to discover that AMOS Basic manages the entire process
automatically! Once you've designed your sprites with the AMOS sprite •
editor, you can effortlessly manipulate them with just a single Basic:
instruction.

145

The sprite commands

Remember to .have a sprite bank loaded into memory when trying out the
various commands in this chapter,, Uie advise you use the file

AM from the AI10S data disc.

SPRITE (display a hardware sprits on the screen)

SPRITE" r, , x ,r , i

The SPRITE command displays a hardware sprite on the screen at

coordinates x,y using image number i „

n is the identification number of the sprite and can range from 0 to
63. Each sprite can be associated with a separate image from the sprite
bank, so the same image can be used for several sprites.

x and y hold the position of the sprite using special hardware 146
coordinates. All measurements are taken from the *hot spot* of your
images., This serves as a sort of 'handle' on the sprite and is used as
a reference point for the coordinates. Normally the hot spot is set to
the top left hand corner of an image., However it can be changed within .,
your program using the HOT SPOT command.

Hardware coordinates are independent of the screen mode and
effectively start from (••••129,-45) on the default screen. AMOS provides
you with several built-in functions for conversions between hardware
coordinates and the easier to use screen coordinates. See the X HARD,
Y HARD, X SCREEN and Y SCREEN functions for more details.

i is the number of a particular image stored in the sprite bank. This
bank can be created using the AMOS sprite editor., and is automatically
saved along with your Basic program,, It can also be loaded directly
with the LOAD instruction. In addition you can use the GET SPRITE
command to grab an image straight off the current screen.

Any of these parameters x,y and i may be optionally omitted, but the
appropriate commas must be included. For example:

Load "AilOSJJATAnSprites/Octopus.abk" -
Sprite 8,200,100,1
Sprite 8,,.1.50,1
Sprite 8,300,, ' '

For a demonstration of sprites in action, load EXAMPLE 11.1 from the
MANUAL folder on the AMOS data disc. ' •

Computed sprites

Although the Amiga only provides you with eight actual sprites, it's
possible to use them to display up to 64 different objects on the
screen at once. These objects are known as -computed sprites-- and are
managed antirely by AMOS Basic. Computed sprites can be assigned by-
calling the SPRITE command with a number greater than 7,, For example,

Load "AMOS...DATAsSprites/Octopus.,abkH :

Sprite 8,2003100,,1

The size of a computed sprite is taken directly from the image data,
and can vs.ry between 16 and 128 pixels wide,, and from 1 to 255 pixels
high.

Before you can make full use of these sprites you need to understand
soma of the principles behind them. Each hardware sprite consists of a
thin narrow strip 16 pixels wide and 256 pixels deep. Depending on the
number of colours, you can have either eight or four of these strips on
the screen at a time,,

It should be obvious that most of the area inside these sprites is 147
effectively wasted. That's because few programs need sprites which are
i-iller +. hin about 4 0 or 64 pixels. However there is a simple trick
which enables us to borrow this space to generate dozens of extra
objects on the screen,, Look at the picture AMOS 1.. PIC (included in this

*
manual file packet) which contains the letters A ^ U O and S.

• < picture AMOSi.PIC >

This sprite can be split into four horizontal segments each enclosing a
single letter. The Amiga's hardware allows each section to be freely-
positioned anywhere on the current line, making a total of four
computed sprites* Here's a diagram which illustrates this process.

< picture AM0S2.PIC > 148

As you can see, a computed sprite is really just a small part of a
hardware sprite displayed at a different horizontal screen position.
Notice the line between each object,. This is an unavoidable side effect
of the repositioning process, and is generated by the Amiga's hardware.

Due to the way computed sprites are produced, there are a couple of
restrictions to their use. Firstly, you can't have more than 8 computed
sprites on a single line.. In practice the system is complicated by the
n e e d t o p r o d u c e s p r i t e s w h i c h a r e 1 a r g e r t h a n t h e 16 p i x e 1 m a x i m u m.
AMOS generates these objects by automatically positioning several
computed sprites side by side., This can be seen from the diagram below:

< picture ANOSo-PIC > '

The maximum of eight hardware sprites therefore imposes a strict limit
to the number of such objects you can display on a horizontal line,, The
total width of the objects must not exceed::

16*8-128 pixels for three-colour sprites 149
16*4=64 pixels for fifteen-colour sprites •

If you attempt to ignore limitation, you won't get an error message,
but your computer sprite will not be displayed on the screen,, So it's
vital to ensure that the above restriction is never broken. This can be
achieved using the following procedures

Add together the widths of all your computed sprites., multiplying the
dimensios of any fifteen-colour sprites by two., If the total is
greater than 128, you'll need to space your sprites on the screen so
t h a t t heir c. o m b i n e d w i d t h lies b e 1 o w this v a 1 u e „ T a ke p a r t i c u 1 a r c: a r e <
if you &re animating your sprites with A It A I., as certain combinations
will only come to light after you've experimented with the sequence for
some time. These problems will be manifested by the random
disappearance of one or more sprites on the screen..

If the worst comes to the worst., you'll need to substitute some of :
your larger sprites with Slitter Objects,, This will increase the
overall size of your program significantly, but it should have a
negligible effect on the final quality of your game.

These restrictions are not confined to AMOS Basic of course„ They
apply equally well to all games on the Amiga,, even if they're written
entirely in machine code' So there's nothing stopping you from
producing your own Xenon II clone using exactly the same tehcniques.

Note that, normally,, hardware sprite number zero is allocated to the :
mouse cursor. You can release this sprite with a simple call to the
HIDE command. See EXAMPLE 11.2.

Creating an individual hardware sprite - :

The only real problem with computed sprites is that you never know
precisely which hardware sprite is going to be used in a particular
object. Normally the hardware sprites used in an object will change
whenever the object is moved. Occasionally this can be inconvenient,
especially when you are animating objects such as missiles which need
to remain visible in a wide range of possible sprits combinations.

In these circumstances it's useful to be able to allocate a hardware
sprite directly. Individual hardware sprites can be assigned using the
SPRITE instruction with an identification number between 0 and 7. . .
Examples • * :

Sprite 1,100.,100,2 • " .. ;

This loads a hardware sprite number 1 with image number 2. N now ;

corresponds to the number of a single hardware sprite, and can range
between 0 and 7. If your image is larger than sixteen pixels wide, AMOS
will automatically grab the required sprites in consecutive order :
starting from the sprite you have chosen,, For examples . s

Sprite 2,200,100,1 . .

Supposing image number 1 contained a 32-bit image with three colours. '•
This command would allocate hardware spries 2 and 3 to the image.
Nothing would happen if you were now to attempt to display hardware
sprite 3 with a command like SPRITE 3,150,100,1 because this sprite
has already been used. You would on 1 y have access to sprites 0,1,4,5,6
and 7, and the maximum numbers and sites of your computed sprites would
b e reduced a c c o r d i ng1y.

Each 15-colour sprite is implemented using a pair of two three-colour 150
sprites. However,, it's not possible to combinea ny two sprites in this
way. Only the combinations 0/1,2/3,4/5,6/7 are allowed. One side effect
of this, is that you should always assign your hardware sprites using . :•
even sprite numbers. Otherwise, AMOS will start your sprite from the
next group of two, effectively wasting the first sprite. / •• .,

Also note that if you try to create a large fifteen-colour sprite
with this system, you could easily use up all the available sprites in
a single object. ,

WARNING! If you are writing a screen scrolling game, you may '• •.
encounter problems using sprites in conjunction with the SCREEN OFFSET
and SCREEN DISPLAY commands. These generate a DMA clash between the
sprite system and the screen bit-maps, and can occasionally lead to
u n w a n t e d s c r e e n e f f e c t s . ,•.•••.• •"

This problem is only relevant if you are using hardware sprites 6/7. ;
When the screen is shifted to the left with SCREEN OFFSET, the amount
of time for your sprite updates is reduced, as the screen DMA has
priority over the sprite system. Unfortunately, there isn't enough
processing time to draw sprites 6/7,, and they will therefore be •
corrupted on your display.

To clear up this problem, create sprites 6/7 as individual hardware
sprites and position them off the screen using negative coordinates.
This will stop AMOS Basic from using them in your computed sprites.
Providing sprites 6/7 are? never displayed on the screen during your
scrolling operations, all will be well.

The sprite palette ' '

The colours required by a hardware sprite i\re stored in the colour

registers 16 to 31. Providing your current screen (node doesn't make use i
of these registers,, the sprite colours will be completely separate from j
your screen colours. Interestingly enough, this is also the case for »
the 4096-colour Ham {node. So there's nothing stopping you from
producing some mind-blowing Ham games with this system!

However you will encounter real problems when using 32 or 64 colour
screen in conjunction with three colour sprites. This is because the
colours used by these sprites &re grouped together in the following
way:

Hardware sprites Colour registers

0
A'..

4
6

/
/

•
-....

/

j

3
5
7

17 ,<
21 /

' • 2 5 /

29 /

' 18 /
•' 22 /

' 26 /
1 30 /

19
23
27
31

Colour registers 16,,20,24 and 28 are treated as transparent,,

The difficulty arises due to the way AMOS generates computed sprites.
The hardware sprites used to produce these objects vary during the
course of a game, so it's vital to ensure that the three colours used
by each individual sprite are set to exactly the same values, otherwise
the colours of your computed sprites will change unpredictably„ Here's
a small AfiOS procedure which will perform the entire process for you 151
automatically,,

Procedure JNIT._.SPRITES
Get Sprite Palette
For 3=0 To 3 . ' : .
For C==0 To 2

Colour 3*4+C+17,Colour(C) '
Next C

N e x t S , ..-,....•

Endproc

The above restriction does not, of course, apply to fifteen-colour
sprites. If you want to make the most of the Extra Half Bright or
32-co lour modes,, you may find it easier to avoid using four-co lour •
sprites altogether. . "

' ' • " ' "] '' '

*GET SPRITE PALETTE (grab sprite
colours into screen) , '

GET SPRITE PALETTE [mask] . •-

This loads the entire colour palette used for your sprite images into
the current screen. The optional "mask" allows you to load just a
selection of the colours from the sprite palette. Each of the 32
colours is represented by a single bit in the mask, numbered from right
to left. The rightmost bit represents the status of colour zero,, the
next vit colour 1, and so on. To load a colour simply set the
appropriate bit to 1„ If, for instance, you wanted to copy just the
first four colours,, you would set the bit pattern tos

Get Sprite Palette £0000000000001111

Identically, since bobs use the same sprite bank as sprites,, this
command can also be used to load the colours of « bob.

Controlling sprites

SET SPRITE BUFFER (set height of the
hardware sprites)

SET SPRITE BUFFER n

This sets the work area in which AMOS creates the images of the
hardware sprits. Acceptable values for n range from 16 to 256. TO set
the correct value for n, simply examine the sprites in the sprite
editor and work out which is the largest sprite length wise, ANy sprite
that is larger than "n" will simply be truncated at the appropriate cut
off point.

SET SPRITE BUFFER is supplied for your use so that you can claim back
any redundant memory our game or application simply doesn't use.

The amount of ffiemory consmned by the sprite buffer can be calculated
using t h e f o r m u 1 a n

Memory = W*4£8«3 = W*96 . ,. .

So the minifflurn buffer size is 1336 bytes and the maximum is 24k.
Notes This command erases all current sprite assignments and resets the
mouse cursor to its original state.

SPRITE OFF (remove one or more 152
sp r it es f ro m the s c r e en)

SPRITE OFF En]

The SPRITE OFF command removes one or more sprites from the screen. All
current sprite movements Are aborted. In order to restart them, you'll
need to completely reinitialize your movement pattern.

SPRITE OFF Removes all the sprites from display

SPRITE OFF n Only deactivates sprite number n , . • .

Note that your sprites are automatically deactivated whenever you call-
up the ADOS Basic editor. They will be automatically returned to their
original positions the next time you enter direct mode.

SPRITE UPDATE (control sprite movements)

SPRITE UPDATE [ON/OFF] ; , ' ;

The SPRITE UPDATE command provides you with total control of the
movements of your sprites. Normally, whenever you move & sprite, its
position is updated automatically during the next vertical blank period
(see WAIT VBL). But if you Are moving a lot of sprites using the SPRITE
command, the updates will occur before all the sprites have been moved.
This may result in a noticeable jump in yur movement patterns,, In these
circumstances, you can turn off the automatic updating system with the
SPRITE UPDATE'OFF command,,

One:.", yaiit- s p r i t e s h«v«? bssiwn s u c c c s f u l l y moved, /OH Can the I! 51 1 tl S

them smoothly into place with a call to SPRITE UPDATE. This will
reposition any sprites which have moved since your last, update,,

=X SPRITE (get x coordinate of a sprite)

x--=X SPRITE(n)

Returns the current x coordinate of sprite n,, measured the hardware
system. This command allows you to quickly check whether a sprite has
passed of the edge of the Amiga's screen.

=Y SPRITE (get y coordinate of a sprite) 153

y=Y SPRITE(n) ' ,

Y SPRITE returns a sprite's vertical position. As usual, n refers to
the number of the sprite and can range from 0 to 63. Remember, all
sprite positions are measured in hardware coordinates. See EXAMPLE 11.3

GET SPRITE (load a section of the screen
into the sprite bank)

GET SPRITE [s,] i,xl,yi TO *2,,y2 - .

This instruction enables you to grab images directly off the screen and
turn them into sprites. The coordinates xl.,yl and x2.,>-2 define a
rectangular area to be captured into the sprite bank. Normally all
images are taken from the current screen„ However it's also possible to
grab the image from a specific screen using the optional screen number

Note; There are no limitations to the region that may be grabbed in
this way. Providing your coordinates lie inside the existing screen
borders, everything will be fine.

i denotes the number of the new image. If there is no existing sprite
w i t n t h i s n u ffi b e r _, a n e w i m age w :i. 11 b e c r e a t e d a u t o m a t i c a 11 y. A M 0 S w 1 i 1
also take the trouble of reserving the sprite bank if it hasn't been
previously defined. See EXAMPLE 1.1.4

There's also an equivalent GET BOB instruction which is identical to
GET SPRITE in a\>ery respect.-Since the sprits bank is shared by both
bobs and sprites, the images Are in exactly the same format,, So it's
perfectly acceptable to use both instructions in conjunction with
either bobs or sprites,, Try changing the sprite instruction in the
previous example to something likes

Bob i 50,0,1 .

C o n v e r s i o n f u n c t i o n s

-X SCREEN (convert hardware coordinates
=Y SCREEN into screen coordinates)

x~X SCREENdX,] xcoord)
y=Y SCREEN(Cn.,j ycoord)

Transforms a hardware coordinate into a screen corclinate relative to
the current screen,, If fhe hardware coordinates lie outside the screen
then both functions will return relative offsets from the screens
boundaries. Type the following from direct mode;;

Print X Screen (1.30) :

The result will be -2. This is because the x screen coordinate 0 is
equal to hardware coordinate .1.28 and thus the conversion of .1.30 to a
screen coordinate results in a position two pixels to the left of the
screen.

If the optional screen number is included then the coordinates will
be returned relative to screen 8 n „ •

=X HARD (convert screen coordinates - 154
=Y HARD into hardware coordinates)

X=X HARD (En ,3 xcoord) • ' .' .'

These functions convert a screen coordinate into a hardware coordinate.
There are four separate conversion functions., the above syntaz converts
xcoord from a coordinate relative to the current screen to a hardware
c o o r d i n a t e . . ' '•••.-'

Y=Y HARD (En,] ycoord)

Transforms a Y coordinate relative to the current screen into hardware
coordinate. As before,, n specif if es a screen number for use with the
functions. All coordinates will now be returned relative to this
screen. .. .

=1 SPRITE (return current image of a sprite)

Image=I SPRITE(n)

This function returns the current image number being used by sprite n.
A value of zero will be reported if the sprite is not displayed.

12; BUTTER OBJECTS (BOBS) 153

While hardware sprites are certainly powerful., they do suffer from a
couple of annoying restrictions.. The solution is to make use of the
Amiga's infamous Blitter chip,, This is capable of copying images to
the screen at, rates approaching a mil lion pixels per second! With the
help of the blitter it's possible to create what &re known as bobs.

Bobs, like sprites,, can be moved around completely independently of >
the screen without destoryinq any existing graphics. But unlike
sprites, bobs are sroted as part of the current screen,, so you can
create them in any graphics mode you wish. This allows you to generate
bobs with up to 64 colours. Furthermore the only limit to the number
of bobs you can display is dictated by the available memory. .

Bobs are slightly slower than sprites and they consume considerably-
more memory. Therefore there's a trade-off between the speed of sprites,
and the flexibility of bobs. Fortunately there's nothing stopping you
from using both bobs and sprites in the same program. . -

BOB (draw a bob on the current screen) . , : '

BOB n, x,, y, i . " , '

The BOB command creates bob n at coordinates x,y using the image ft i. -

n is the identification number of the bob,, Permissible values
normally range from 0 to 63,, but the number of bobs may be increased
using an option from the AMOS configuration program,, Providing you've
enough memory, you can set this limit to any number you wish.

x and y specify the position of the bob using standard screen
coordinates. These coordinates are not the same as the hardware
coord in a tes used by the equ i va 1 en t SPRITE comrnan d . !...i ke spr i tes,, each
bob is controlled through a *hot spot*,, This may be changed at any time
with the HOT SPOT command-

i refers to an image which is to be assigned to the bob from the
sprite bank. The format of this image is identical to that used by the
sprites, so you can use the same images for either sprites or bobs. • ,

After you've created a bob, you can independently change either its
position or its appearance by omitting one or more parameters from this
instruction. Any of the numbers x,,y or "image" may be left out,, with ,
the missing parameters retaining their original values. This is
particularly useful if you are animating your bob with AMAL, as it
allows you to move your object anywhere you like, without disturbing ''
your existing animation sequence. However you must always include the
commas in their original order. Example:

Load "AMOS_.DATA:Sprites/Octopus.,abk"
Flash Off s Get Sprite Palette •• "•'.-•'. ;
Channel 1 To Bob 1 r .
Bob 1,0,100,1 : .
Amal i.,"Anim 0,, (1,4) (2,4) (3,4) (4,4)" : ' 156
Amal On: \
For X=i; To 320 :

Bob lj, X ? ,

Wait \Jbl
Next x

Whenever a bob is moved, the area underneath is replaced in its
original position,, producing an identical effect to the equivalent
SPRITE command.. Unlike STOS on the ST, each object is allocated its own
individual storage area. This reduces the amount of memory used by
bobs, and improves the overall performance dramatically. Due to the
Blitter, of course, therse's no real comparison between STOS sprites
and AMOS bobs.

Although the BOB command works fine for small number of bobs,, there's
an annoying flicker when you try to use more than three or four objects
on the screen at once., This happens because the bobs are updated at the
same time as the screen,, You can therefore see the bobs while they Are
being drawn which results in an unpleasant shimmering effect.

One alternative for improving the quality of your animations is to
just limit your bobs to the bottom quarter of the screen,, Since bobs
Are redrawn extremely quickly, the updates can often be completed
before the lower part of the screen has been displayed. This provides
you with acceptably smooth movements while consuming ^ery little
memory, so it's a useful trick if you're running short of space. See
EXAMPLE 12.1 I •• '; • •• •• .'

Obviously this cannot be seen as a serious solution to such a glaring
problem. So before you throw away your copy of AH OS Basic: in disgust,
you'll be relieved to hear that there's a simple way of eliminating
this flicker completely, even when you're using dozens of bobs anywhere
on the screen:

DOUBLE BUFFER (create a double screen buffer) / '

DOUBLE BUFFER ^

Creates a second invisible copy of the current screen. All graphics
operations, including bob movements, &re now performed directly in this
^logical screen*, without disturbing your TV picture in the slightest.
Once the image has been redrawn,, the logical screen is displayed, and
the original ^physical* screen becomes the new logical screen™ The
entire process now cycles continuously, producing a rock solid display
even when you're moving hundreds of bobs around the screen at once,,

The entire procedure is performed automatically by AMOS Basic,, so
after you've executed this instruction you can forget about it
completely. Note that since the hardware sprites are always displayed
using the current physical screen, this system will have absolutely no
effect on any existing sprite animations- . .

Double buffering works equally well in all of the AMIGA'S graphics
modes. It can even be used in con j net ion with dual play-fields. But be
warned! Double buffering doubles the amount of memory used by your
screens. If you attempt to doub1e buf f er too many screens, you ' 11
quickly run out of memory. See EXAMPLE 12.2 :

In practice, double buffering is an incredibly useful technique,
which can be readily exploited for most types of games. It has seen
service in the vast majority of commercial games, including Starglider
- that's why it's such an integral part of AMOS Basic. A detailed
explanation of this process can be found in the SCREENS chapter. AL.so

SCREEN SUAF- .„,,,:! AUTOSACK

! SET BOB (set drawing mode of bob)

BET BOB n,back,planes,minterms

The SET BOB command changes the drawing fliode used to display a bob on
the screen, n is the number of the bob you wish to affect,

"back" chooses the u&y the background underneath your bob will be
redrawn. There are three possibilities: .

- A value of 0 indicates that the area underneath your bob should be
saved in memory. The old image data is automatically replaced when
the bob i s m o v e d , r e s u 11 i n g a s m o o t h m o v e m e n t e f f e c t.

- if the "back" parameter is positive then the original background
will be discarded altogether;, and the area behind the bob will be
filled with colour "back"-!,, This is ideal for moving bobs over a
solid block of colour such as a clear blue sky, as it's much faster
than the standard drawing system,,

- Turn of the redrawing process completely by loading "back" with a
negative value such as - 1 . You can now deactivate the automatic
updating process using BOB UPDATE, and manually move your bobs with
a call to BOB DRAW. This allows you to regenerate the screen
background using your own customised drawing routines. ' •

"planes" is a bit map which tells AMOS which screen planes your bob
will be drawn in. As you. may know, the Amiga's screen is divided up
into a number of separate bit-planes. Each plane sets a single bit in
the final colour which is displayed on the screen.,

The first plane is represnted by bit one, the second by bit two and
so on. Normally the bob is drawn in all the bit-planes in the current
screen mode. This corresponds to a bitpattern of "illiiii, •/ '.

By changing some of these bits to zero, you can omit selected colours . .-
from your bobs when they are drawn. This can be used to generate a
number of intriguing screen effects,,

"fninterms" selects the blitter mode used to draw your bobs on the
screen. A full description of the available modes can be found in the
section on SCREEN! COPY, "minterm" is usually set to one of two values;

m i 0 0 0 1 0 If the bob is used with a mask
*li001010 if NO MASK has been set

Feel free to experiment with the various combinations. There's no
danger of crashing your Amiga if you make a mistake. Advanced Amiga
users find the following information useful,,

Blitter]source Purpose 158

A | Blitter mask
B Blitter object
C! Destination screen

Note that you afe recommended to use SET BOB fcbefore* displaying your
bobs on the screen. If you don't, the Amiga won't crahsh, and you. won't
get an error message, but your screen display may be corrputed.

NO MASK [n]

NO MASK (remove blitter mask)

As a default, a blitter mask is automatically created for every bob you
display on the screen,. This mask is combined with the screen background
to make colour zero transparent. It's also used by the various
collision detection commands.

The NO MASK command removes this mask, and forces the entire image to
be drawn on the .screen. Any parts of the image in colour zero will now
be displayed directly over the existing background.

n is the image number whose mask is to be removed. This mask should
never be erased! if the image is active on the screen,, otherwise the
sasociated bob will be corrupted. If you must remove the mask in this
way, it's important to deactivate the relevant bobs with BOB OFF" first.
Here's an examples

Centre "Click mouse button to remove mask"

Double buffer s Load "AHOSJ)ATA:Sprites/actopus.abk"
Get Sprite Palette " ' .^
Do |
Bob ij,X ScreenCX House),Y ScreensY House),!
If Mouse Click Then Bob Off s No Mask 1 : . .., -.

Loop

See MAKE MASK

AUTOBACK (set automatic
screen copying mode)

AUTOBACK n

When you &re using a double hufferend screen, it's essential to
synchronize your drawing operations with the movements of your blitter
objects. Remember that each double buffered screen consists of two
separate displays,, There's one screen for the current picture, and
another for the: image whilst it's being constructed. If the background
underneath a bob changes while it's being redrawn,, the contents of
these screens will be different,, and you'll get an intense and annoying
flickering efect.

The unique AMpS AUTOBACK system provides you with a perfect solution
to this problem}. It allows you to generate your graphics in any one of
three graphics modes, depending on the precise requirements of your
program,, Just for a change,, we'll list tese options in reverse order.

AUTOBACK 2 (automatic mode - default) . ' , '

I

In this mode,jail drawing operations Are automatically combined with
the bob updates. So anything you draw on the screen will be displayed
directly underneath your bobs, as if by magic, The principles behing
this system c:<kn be demonstrated by the following code:

Bob Clear i Rem Draw on first screen „„. Remove Bobs
Plot I5y,100 s Rem This can be anything you wish
Bob Drâ j s Rem Redraw bobs

Wait Vb.L
Bob Clear

159

Plot 1501.100 : Rem Perform your operation a second time

Bob Draw
Screen Swap s Rem Get back to first screen
Wait Vblj .

As you can see, all screen updates are performed exactly twice.
There's one operation for both the logical and the physical screen.
See EXAMPLE 12J.3 for a demonstration.

•

One obvious Iside effect., is that your graphics now take twice as
long to be drajwn. Furthermore, the program will be halted by at least
2 vertical blanks, e^ery time you output something to the screen.
This may cause: annoying delays in the execution of critical
activities such as collision detection.

AUTOBACK 1 (half-automatic: mode) "-./ - ' •

Performs each graphical operation in both the physical and logical
screens. Absolutely no account is taken of your bobs, so you should
only use this system for drawing outside the current playing area.

Unlike the standard mode, there's no need to halt your program
until the next vertical blank,, Mode 1 is therefore ideal for objects
such as control panels or hi-score tables, which need to be upda'ted
continually during the game.

AUTOBACK 0 (manda.1 mode) ; . . ,< ' '

Stops the AUTOBACK system in it's tracks. All graphics Are now output
straight to tljie logical screen at the maximum possible speed. You
should use this option if you need to repeatedly redraw large
sections of your background screen during the course of a game..
This will allow you to safely perform your collision detection
routine s a t r $ g u r a 1 i n t s r v a 1 s, w i t hi o u t d e s t r o y i n g t h e o v e r a 11 q u a 1 i t y
of the animat]
examine.

on effects. Here's a typical program loop for you to

Bob Update Off , ' *
Repeat j , • '
Screen {-Swap .
W a i t V b j ' : • , - •'•;•;•

Bob Cle^r
Rem Now|redraw any of your gfxs which have changed 160
Rem Perform your game routines (Collision detection etc..)
Bob dratji • ,;
Until WJN . . . •'/:• .

Note that this procedure will ONLY work if there's a smooth progression
from screen to |cresn. It's entirely up to you to keep the contents of
physical and locjical screen in step with each other. An example of this
technique can bsi found in EXAMPLE 12.4 .••••- .

Supposing forjinstance, you wanted to display a bob over a series of
random blocks, ton might try to use a routine like:

Load "Ar1

Get Spri
Update C

Bob C]
X=Rnd(

OS_.i}ATA;Sprites/Sprites.abk" : Flash Off •
te Palette : Double Buffer s Cls 0 s Autoback 0
ff : Bob 1,160,100,1

e A r
320)+l s Y=Rnd(200)+l ; W=Rnd(80)+l

H-Rnd(l50]H-l : I=Rnd(i5)
Ink I !: Bar X,Y To X+W,Y+H
Rem <tihis would normally call your collision detection routine.:

Bob I)flaw

Screed swap : Wait Vbl

Loop •" .

But since there's no relationship between the physical and logical
screens, the display will now flick continuously from screen to screen.
To overcome this problem, you'll need to mimic the original AUTOBACK
system,, Replace! the lines in the previous example between the lines
Do and Loop asjfollows: . . •

Rem Update first screen
Screert Swap : Wait Vbl . • '
Bob cjear '•••'•

X=Rnd|320)+l : Y=Rnd(200)+l ; W=Rnd(80)+l
H=Rnd(50)+l :
Ink I! s Bar X.
Bob Dfaw
Rem Update second screen
S c r e e iji Swap : U a i t V b 1
Bob CJear-

Y=Rnd(200)+l
I=Rnd(15)
Y To X+w\Y3-H

Bar X.Y To X+W,Y+HInk I
Bob Dfaw

The two screens; are now updated with exactly the same information,, and
the display remains as steady as a rock., even though there's a great
deal of activity going on in the background.

Autoback can be safely used at any point in your program. So it's
perfectly possiple to use separate drawing methods for the different
parts of your sjrreen. It's also totally compatible with all graphics
operations including Blocks, Icons,, and Windowing.

Bob Control commands

BOB UPDATE (control bob movements : .

BOB UPDATE [0N/()FF] : ' ' ,\

Normally all boJDS are updated once every 50th of a second using a
built-int interrupt routine. Alhouth this is convenient for most
prog rams, there|are some applications which require much finer control
over the redrawing process.

BOB UPDATE OFT
automatic screen
now redraw your
using the BOB UPDATE
large number of
position before
far smoother me-

turns off the bob updates and deactivates all
swi tching opera tions if they ' ve been se 1 ectsd . You. may
bobs at the most appropriate point in your program

command. This is ideal when you &re animating a
objects as it enables you to move your bobs into
d rawi ng them on t he screen„ Inev i tab1y this resu11s i n
ements in your game.

One word of w<
vertical blank,
on the current

trning: The bob updates will only occur at the NEXT
Also note that BOB UPDATE will always redraw the bobs
ogical screen, so if you forget to use the SCREEN SWAP
will .

161

BOB ICLEAR (remove all the bobs from the screen)

BOB CLEAR

Removes all actj.ve bobs from the screen, and redraws the background
regions underneath. It's inteded for use with BOB DRAW to provide an
alternative to the standard BOB UPDATE command

BOB DRAuJ

BOB DRAW (redraw bobs)

Whenever the boss &rs redrawn on the screen, the following steps are
automatically performed:

1. All active bobs Are removed from the LOGICAL screen and the
background regions are replaced. This step is performed by BOB
CLEAR. |

2. A list is made of all bobs which have moved since the previous
update.

3. The background regions under the new screen coordinates Are saved
in memory.

4. All active bobs are redrawn at their new positions on the logical
screen

5. If the DOUB-E BUFFER feature has been activated,, the physical
and logical; screens are now swapped

The BOB DRAW command performs steps 2 to 4 of this process directly,,
Supposing you wjished to create a screen scrolling arcade game. In this
situation., it would be absolutely vital for your scrolling operations
to be perfectly

would be redraw
display, and wo

synchronized with movement effects. If the aliens were
to move while the scrolling was taking place, their background areas

n a t the wrong p 1 ace. Th :i. s wou 1 d to ta 11 y corru pt ;/oit r
nId result in a hopeless jumble on the screen. Load

EXAMPLE 12.5 folr a demonstration of this process.

xl=X BOB(n)

=::X BOB (get X coordinate of bob)

Returns the current X coordinate of bob number n. This coordinate iis
measured relatijvs to the current screen,, See also Y SPRITE,, X 11OUSF and
Y HOUSE.

yl=Y BOB(n)

Y BOB complements
bob number n. Thi
coordinates.

=Y BOB (get Y coordinate of bob)

the X BOB command by returning the Y coordinate of
is value will be returned using normal screen

=1 BOB (return current image of bob)

162

Irnage"U BOB(n)

This function
value of zero w:

returns the current image number being used by bob n.
11 be reported if the bob isn't displayed.

LIMIT BOB [n,]

This command re

LIMIT BOB (limit a bob to a rectangular .'
region of the screen)

l, yl TO x2,y2

stricts the visibility of your bobs to a rectangular
screen area enclosed by the coordinates xl,yt to x2,y2., The x
coordinates are! rounded up to the nearest 16-pixel boundary. Note that
the width of this region must always be greater than the width of your
bobs,, otherwise you'll get an "illegal function call" error.

If it's included, n specifies the number of a single bob which is to
this instruction., otherwise *all* bobs will be
can restore the visibility limit to the entire entire

be affected by
restricted. You
screen by typin

LIMIT B

GET BOB

GET BOB (load a section of the screen
into the sprite bank)

L,yl TO x2,y2

This instruction is identical to the GET SPRITE command. It grabs an
image into the sprite bank from the current screen,

xl,yl to x2,yg are the coordinates of the top and bottom corners of
the rectangularj area to be grabbed.

i specifies the image number which is to be loaded with this area, s
selects an optional screen number from which the image is to be taken.
See GET SPRITE

PU

PUT BOB n

This is the exa
of PUT BOB is ti
on the screen,
from being redr
synchronise the
follow this coffihand

"or more details. See also EXAMPLE 12,6.

BOB (fix a x o p y af a bo b o n t o t h e s c r9en)

:t opposite of the previous GET BOB command. The action
place a copy of bob number n at its present position

t works by preventing the background underneath the bob
w n d u r i n g t h e n e x t. v e r t i c a 1 blank p e r i o d ,. I n o r d e r t o
bob updates with the screen display, you should always

with a WAIT VBL instruction.

aftoVNote that
may be moved or

this instruction has been performed,, the original bob
animated with no ill efects.

F A E T E T B O B < d i

bank on the screen)

163

PASTE BOB x,y,i

The PASTE BOB c
coordinates x,,y
immediately, an
ICON.

BOB OFF En]

Occasinoal ly,,
altogether. The
terminates any
removed by this

fnmand draws a copy of image number i at *screen#
Unlike PUT BOB this image is drawn on the screen
all t h e n o'r m a 1 c lipping r u 1 e s a r e o b e y e c! „ S e e P A S T E

BOB OFF (remove a bob from the display)

u may wish to remove certain bobs from the screen
BOB OFF command erases bob number n from the screen and
ssociated animations,, If n is omitted, all bobs will be
instruction. . . • :

164

In this section
using the sprit
Basic program,
using the mouse

The mouse point

The mouse curso
Alternative to
can replace the
also a group of
position and st

x HOUSE,, Y nous

HIDE COM]

This command re
count of the nu
internally by t
of SHOW instruc

There's also
a c c e s s e d w i t h H
mouse, no matte

Note that HID
effect on any o
Y ROUSE functio

SHOW [ON]

This returns th
Works the same

CHANGE HOUSE m

This a11o ws y o u
mouse patterns ;
the numbers 1-3

If you specify i
image stored in
using the expre*

In order to u<

13;: OBJECT CONTROL

you will find out how the various objects generated
and bob commands can be controlled from within an AMOS
he topics under discussion include collision detection,,
cursor and reading the joystick.

provides the games programmer with a valuable
he standard joystick. With the CHANGE MOUSE command you
mouse with an image in the current sprite bank. There's
instructions which allow you to determine both the
tus of this mouse at any time. These include the
and MOUSE KEY instructions.

BE (remove mouse pointer from the screen)

oves the mouse pointer from the screen completely. A
her of occasions you have called this function is kept
e system. This needs to be matched by an equal number
ions before the pointer will be returned on the screen,

nother version of this instruction which can be >.
DE ON,. This ignores the count and *always* hides the
how many times you've called the SHOW command.

only makes the mouse pointer invisible. It has no
her AIIOS commands., so you can still use X MOUSE and
s to read the coordinates of the mouse as normal.

SHOW (activate the mouse pointer)

mouse pointer to the screen after a HIDE instruction,
ay that HIDE does.

CHANGE MOUSE (change the shape of
the mouse pointer) '

to change the shape of the mouse at any time. Three
re provided as standard,. These can be assigned using

value m greater than 3, this is assumed to refer to an
the sprite bank. The number of this image is determined
sion l=m™3. So image number 1 would be installed by a

e this option, your sprite image must be exactly 16

165

166

pixels wide and
limit to the he

k=M0USE KEY

Enables you to
been pressed. I
of the mouse bu

Bit 0
Bit 1
Bit 2

c=M0USE CLICK

Checks wheier t
bit pattern irsd

One shot tests
pressed. These
tested once. So

=XM0USE~

xl-X MOUSE

X HOUSE returns
hardware notati
to a specific s
MOUSE with a va

X MOUSE

--YPIOUSE=

yi=Y MOUSE

Returns the Y c
set the Y posit
See EXAMPLE 13.

LIMIT MOUSE xl.

Restricts mouse
hardware coord in
the mouse is con
beyond it. Simp]

have no more than four colours. However there's no such
qht of your image.

MOUSE KEY (read status of mouse buttons)

uickly check whether one or more of the mouse keys have
returns a bit-pattern which holds the current status

tons. • .'•

Set to 1 if the LEFT button pressed,, otherwise zero.
Set to 1 if the RIGHT button pressed, otherwise zero.
Set to 1 if the MIDDLE button pressed (if available).

=M0USE CLICK (check for a mouse click)

s user has "clicked" on a mouse button. Uses the same
cation as ^MOUSE KEY.

re only set to 1 when the mouse key has just been
its Are automatically reset to zero after they've been
they will only check for a single key press at a time.

(get/set the X coordinate of the mouse pointer)

the current X coordinate of the mouse pointer in
n. You can also use this function to move the mouse on
reen position. This can be achieved by assigning X
ue, just like a Basic variable, for example; :

(get/set the Y coordinate of the mouse pointer)

ordinate of the mouse pointer. This can also be used to
on of the mouse pointer the same way as using X MOUSE,
for an example of the X HOUSE and Y MOUSE,.

LIMIT HOUSE (limit mouse to a section
of the screen)

1 TO x2,,y2

movements to the rectanjular ,v. >-•• i» .•>. dsfinod b>- i. i>,,.

ates (xl,yl) and (x2,y2). Note that unlike LIMIT BOB.
plstely trapped inside this zone and cannot be moved
y use this instruction with no parameters to restore

167

the mouse to the

LIMIT w:

See also EXAMPLE

Reading the joy

AMOS Basic incl
the move merits o
sockets.

d--JOY(j)

This function r
status of a joy
placed in the 1
from the right-
accessed using

The state
binary bits

of
in

has been perfor
has proved
direction.

Bit

posi
Here

NUBI

0
1

3
a.

See EXAMPLE 13.

• i l lIso usYou can a
this binary not

x^JLEFT(j)
x=JRIGHT(_i)
x=JUP(j)
x=3D0WN(j)

Detecting colli

If you're writi
check for colli

full screen &

JSE

13.2 from the manual folder for a demonstration,

tick

des six functions which allow you to immediately check
a joystick insterted in either of the available

=3 0 Y (r e a d j o y s t i c k}

turns a binary number which represnts the current
tick in port number j , Nor m a 11 y yaur j oystick will be
ft socket (number 1) . However you can remove the mouse
and socket and replace it with a joystick. This can be
ort « 0.

he joystick can be read by inspecting the pattern of
he resuIt., Each bit indicates whether a specific action
ed by the user. If a bit is set to one then the test
ive and the joystick has been moved in the appropriate
s a list of the various bits and their meanings!

er Significance

Joy moved up
" down
11 •• l e f t
11 right

Fire button pressed

the following commands, if you are not familiar with
tion:

=JLEFT(j) (test joystick movement left)
J RIG!-' T (j) (t e s t joys t i c k m o v e m e n t rig h t)

=: J U P (j) (t e s t joys t i c. k m o v e m e n t u p)
=JDOWK!(j) (test joystick movement down)

hese functions return a value of -I (true) if the
oystick in port j has been pulled to the associated
irection. Value 0 is reported,, if the condition is
alse (joystick hasn't been moved to the asked
irection).

ions

g an arcade game it's vital to be able to accurately
ions between the various objects on the screen,, Ail OS

168

16?

Basic, includes
tests quickly ar

Detecting colli

c=SPRITE COL (n

This provides y>
more sprites ha
active hardware
collision has o
the result will

The standard
can also test a
command:

c=SPRIT

The above instr
sprites s to e
then get the in
COL function.

SPRITE COL. (detect collisions between
two hardware sprites) , '

C,s TO e]) . , .\

u with a simple &ay of testing to see whether two or •
e collided on the screen. The number n refers to an
sprite w h i c h i s t o b e c. 1 i c ke d f o r a c o 11 i s i o n . I f a
: cur red a value of -.1. (true) will be returned, otherwise
be set to 0 (false). : : , :

Prom of this function checks for all collisions. But you
whole group of sprites using an extended version of the

: COL n,s TO e .

Action checks for collisions between sprite n and
inclusive). Once you've detected a collision, you can
jividual sprite numbers which have vollided using the

NOTE that in
sprite mask wit i
not be detected
EXAMPLE 13.4.

Detecting colli

c=B0B(n, [,s TO

The BOB COL fun
bob. If a colli
set to -1 (true

Normally the
specify a colle
parameters s to
examined with t

c=SPRITEBOB COL

ive powerful functions which allow you to perform these

d easily.

ions with a sprite

jrder to use this function,, you'll need to create a
the MASK command first, otherwise your collisions will
A detailed example of this command can be found in

F,ions with a bob

BOB COL (detect collisions between
t w o b 1 i 11 e r o b j e c t s)

e])

:tion checks bob number n for a collision with another
=-ion has been detected., the value returned in c will be
, otherwise it wi11 be 0„

ommand will check for all collisions, but you CS.P,
tion of bobs to be tested using the optional range
e. The status of these bobs can be individually
e COL command. See EXAMPLE 13,. 5.

Collisions between bobs and sprites

SfRITEBOB COL (test for a collision betwee

n [,s TO ej)

170

This function d
BOBS. The value
discovered, or
ending points
bobs s to e. If
tested by this

ecks for a collision between SPRITE n ane one or more
of c will be either -1 if a collision has been
if there have been no collisions. The starting and

specify that collisions will only be detected between the
they B.re not included then all active bobs will be
nstruction.

WARNING! Coll
possible on a 1
used for bobs ai
this function w

Bi

c=BGBSPRITE COL

The BOB SPRITE
and several spr
same as in the

c=C0L(n)

The COL array h
prev i ou s1y test

Each object y
array,, This ele
detected with o
is simples The
number 1, the sc
13„7 •

If you are us
the objects wil
order to avoid
immediatly afte

HOT SPOT image,x
HOT SPOT image,p

This command set
bank. The hot
coordinate calcu

HOT SPO

x and y coord inA
These coordinates
position an object

sion detection between a sprite and a bob is only
w resolution screen,, In Hi Res mode, the pixel si
d sprites s.re totally different, and the results from
11 be unreliable,.

BSPRITE COL (test for a collision between
bobs and sprites)

n < i. i TO ej)

01. function checks for collisions between a single bob
tes. The results and usage of this instruction &re
PRITEBOB COL. See EXAMPLE 13.6.

=C0L (test the status of a sprite or
b after a collision detection intruction)

Ids the status of all the objects which have been -
ri by the collision detection functions,

u have checked is associated with one element in this
ent will be loaded with -1 if a collision has been
ject number n,, or 0 if it has not. The nufiibering system
irst element in the array holds the status of object
cond represents object number 2, and so on. See EXAMPLE

ng the SPRITE COL or B0BSPR1TE COL instructions then
be hardware sprites, otherwise they will be bobs,, In

onfusion, it's sensible to call this instructoin
the re1evan t detec tion command„

HOT SPOT (set the hot spot for an image
in the sprite bank)

tY

s the hot spot of an image stored in the current sprite
spot of the object is used as a reference point for all

lations,, There Are two versions of this instruction.

image,, x ,.y

<S- m £, A •=; u F e> d •$'• y o rti -J-. h o -top 1 e? -F -t c: o v n e? *-• o F i h s? i ni ix g e «

will be added to the sprite bank or bob coordinate to
precisely on the screen.

171

hot spot;
i_ „ „„ _.. „. ,„. 4.

HOT SP

This is a short
of nine predefi
below where the

$00

form of the instruction which moves the hot spot to one
ied positions,, The positions Are shown in the diagram
centre point of the image is represent by a value of

$02

MAKE MASK (make a mask
around an image for collision detection)

MAKE MASK [n]

Defines a mask
by all the AMOS
therefore creat
the image numbe
sprite bank. Th

importan
boh is first
in the running
call to MAKE

Collisions with

AMOS Basic incl
check whether a
screen„

These screen
rebound games s
individual sere
and switches ne

RESE

RESERVE ZONE En

rite image
_ jr Note that it's perfectly

iefal for the hot spot
to lie outside the
actual image,,

image,. p

$10
$11
$12

$20
$21
*22

See EXAMPLE 13.8.

ground image number n in the sprite bank. This is used
Basic collision detection commands. You should

? A mask for every object you wish to check. If you. omit
r n, then a mask will be generated for each image in the
s may take a little time.

t to note that masks &re generated automatically when a
drawn on the screen. This might cause a significant delay

yf your program, so it's worthwhile placing an explicit
P1AJ3K during your initialisation procedure.

r e c t a n g u 1 a r b 1 o c ks

.ides a number of functions which allow you to quickly
sprite or bob has entered a rectangular region of the

cones are especially useful for collision detection in
ich as Arkanoid as each block can be assignet its own
;n zone. You can also use zones to construct the buttons

for control panels and dialogue boxes.

WE ZONE (reserve space for a detection zone)

i

m o m a v v i -t ' ̂

of zones in one
and restore the

RESERVE ZONE ali.ocat.es enough memory for exactly n detection zones.
This command should always be used before defining a zone with SET
ZONE.

The only limij. to the number of zones is the amount of available

of your programs. To erase the current zone definitions
ffl e fn o r y b a c k t o t h e m a i n p r o g r a m, s i m p 1 y t y p e

172

RESERVE

SET ZONE z,xl,yl

Defines a rectan
various ZONE
and xl.yl and
right hand corn?

gular zone which can be subsequently tested using the
commands, z specifies the number of the zone to be created

ny2 input the coordinates of the top left and bottom
rs of the rectangle..

Before using
your zones with

t=ZONE(ls],x:!y)

ZONE returns thi
x,y« Normally t
can also include

After ZONE ha
at the specifier

Note that ZOM
won't detect an;

It is possibl
Y BOB functions
zone. This can

X=ZoneC

See Examples 13

t=HZONE([s],x,y

HZONE is almost
now measured in
function to det
zones. For exam

X=Hzone

See also EXAHPLi

I0NE with no parameters,

SET ZONE (set a zone for testing)

TO x2?y2

his instruction you'll need to reserve some space for

RESERVE ZONE.

=Z0NE (return the zone under the
the requested screen coardinates)

number of the screen zone at the graphic coordinates
e coordinates &r& relative to the current screen - you
an optional screen number s in this function,.

been called, t will hold either the number of the zone
coordinates or a value of 0 (false).,

only returns the first zone at these coordinates - it
other zones which lie inside this region.

to use this function in conjunction with X BOB and
to detect whether a bob has entered a specific screen
e accomplished using the following codes

b o b (n) j,Y B o b (n)) •'. •.

? and 13.10. .. • ,

=HZQWE (return the zone under the
requested hardware coordinates)

identical to ZONE except that the screen position is
h a r d w a r e c o o r d i n a t e s. Y o u c a n t h e r e f o r e u s e t h i s
ct when a hardware sprite enters one of your screen
leu

X Sprite(n) ,,Y Sprite(n))

13.11, and ZONE, MOUSE ZONE, SET ZONE and ZONE*

I OUESI" 2 O U C <<::h«,c:l,_ „ I .««[„, r I. 1 . «-- ,n <

has entered a zone)

173

x=MOUSE ZONE

The HOUSE ZONE •
occupied by the

X=Hzone

RESET 7.0WE [z]

This command pe
ZONE. If the op
will be reset,
RESET ZONE only
memory allocate

Sob priority

unction returns the number of the screen zone currently

mouse pointer. It's equivalent to the lines

X mouse,Y mouse)

RESET ZONE (erase a zone)

manently deactivate any of the zones created by SET
tional zone number z is included then only this zone
otherwise all the zones will be affected. Note that
erases the zone definitions., it does not return the
by RESERVE ZONE.

PRIORITY ON/OFF (change between priority modes)

PRIORITY ON/OFF

Each bob is ass
uses this numbe
on the screen,
be displayed in
priority value

You should rene
The cnoise of n
your obj ects on

In addition t
bobs according
greatest priori
This allows you
games,, Look at

Load "A
Get Spr
P r i o r i t
Bob l,l'
Channel
A dial 2,
Amal 3,
Ama.I On
Wait Ke;
Priori t;
Wait

Lgned a priority value ranging from 0-63. Amos basic
to decide which order the objects should be displayed

vs a rule,, any bob with the highest priority will always

f r o n t i f any objects w i t h a 1 o w e r p r i o r i t
is taken directly from the number of a Bob,,

T h e

smber this fact when assigning numbers to your bobs,
.unber can have wide ranging effects on the appearance of

the screen, ,. ' „

3 the standard system, it's also possible to arrange the
to their position on the screen,, PRIORITY ON assigns the
ty values to the bobs with the highest Y coordinates,
to create a useful illusion of perspective in your
Lhe example below::

!OSJ)ATA/Sprites/Monkey__right,abk" 2 Cls : Flash Off
. te Palette
•• Off s Rem Set normal mode
0,100,2 : Bob 2,0,72,2 : Bob 3,320,128,2 >
2 To Bob 2 s Channel 3 to Bob 3
Loops 11 320,0,320 ; H -320,0,320 ; Jump Loop"
Loops M ••••320,,0,320 ; Cl 320,,0,320 $ Jump Loop"

On s Rem Set Y mode

Hormally, both Roving bobs pass below the object in the centre.. When
you change the flriority system with a call to PRIORITY ON, the bobs are
now ranked in order of their increasing Y coordinates. So bob three
moves aboce bob
bohind it.

one while at the same time, bob two passes smoothly

174

HINT; It's usually best to position the Hot Spot of the sprite at it;

base. This is because the Y coordinates used by this command relate to
the position of| the Hot Spot on the screen. Also notice that the
PRIORITY OFF instruction can be utilised to reset the priority back to
normal.

Miscellaneous c :smmands

UPDATE (c h a n g e a ut om a t i c s p ri t e/bob u p d at e s)

UPDATE [ON/OFT]

Wo r m a 11 v a n y o b,
redisplayed whei
temporarily hal
not active the :
Actually, all y
the results are
redrawing opera
three different

iects you draw on the screen will be automatically
lever they Are animated or moved. This feature can he
Led using the UPDATE OFF command. When the updates Are
SPRITE, BOB and A11AL commands apparently have no effect,
)ur animations are working correctly - it's just that
not being displayed on the screen,, You can force this
tion at any time using the UPDATE command. Here are the
forms of the UPDATE instruction.

UPDATE OFF

Turns of the au

UPDATE

Redraws any spr:

UPDATE

Returns the spr:

tomatic updating,

tes which have changed their original positions

.te updating to normal. See EXAMPLE 13,12,

175

r~

14; AHA!...

If you wish to generate the smooth movement required in an arcade game,
it's necessary io move each object on the screen dozens of times a
second., This isj a real struggle even in machine code and it's way
beyond the abilities of the fastest version of Basic,

AMOS sidestep
language which
is capable of g
impossible in s

The (AM)os (A
can be used to
incredible spee
using interrupt

Each program
Objects may be
from a separate
directly from t

The sheer ver
believed.

AMAL principles

in i

ARAL is effect!
carefully opt if,
there are instr
(If) and repeat!
punch comes whe

•• this problem by incorporating a powerful animation
i.s executed independently of your Basic programs, This
snerating high speed animation effects which would be
tandard Basic,

)nimation (L)anguage (AMAL.) is unique to AHOS Basic, In
animate anything from a sprite to an entire scren at
i« Up to 16 AMAL. programs can be executed simultaneously

controls the movements of a single object on the screen,
iiuveci in complex predefined attack patterns, created
editor accessory™ You can also control your objects
he mouse or joystick if required,

satiiity of the AilAL system has to be seen to be

ly just a simple version of Basic which has been
ed for the maximum possible speed* As with Basic,,

uctions for program control (Jump), making decisions
mg sections of code in loops (For...Next). The real
AMAL program is run. Mot only are the commands

lightning fast but all AHAL programs are *compi led* before run-time,

AMAL commands
more capital letter-
allows you to p
readable., So th
instruction as

are entered using short keywords consisting of one or
Anything in lowercase is ignored completely. This

ad out your AMAL instructions into something more
e M command might be entered as Hove or the L

Let.

AMAL instructions can be separated by parctically any unused
characters incl
this purpose, a
semi-coIon ";"

There are two
produce your an
save them into
AHOS Basic usin
is:

.iding spaces. You can't however,, use the colon for
s it's needed to define a label. We advise you to use a
to separate commands to avoid possible AMAL headaches.

ways of creating your AMAL programs. The first is to
imation sequences with the AMAL accessory program and
3. memory bank or you can define your animations inside
3 the AMAL command. The general format of this function

176

•• A M A L n , a $.;'•'" ' . :

"n" is the identification number of your new AMAL program. As a default
all programs &rf assigned to the relevant hardware sprite. So the first
AMAL program controls sprite number one,, the second sprite number two,
and so on. You |:an change this selection at any time using a separate
CHANNEL command |. a$ is a string containing a list of AMAL instructions

Load "AlfiOS_DATAsSprites/!vionkey__right,,abkH

Get Sprijte Palet te
Sprite 81,130,50,1
Amal 8,"Ss M 300,200., 100 •, M ••••300,200,100 J S"

8 Rem Activate AMAL program number eightAmal On
Direct

The program reti.
command. Try typ
movement patterr) continues regardless, without interfering with the
rest of the AMOS system. Also note we have used sprite 8 to fores the
use of a computed sprite. All computed sprites from 8 to 15 ars

«.signed to the equivalent channel number by the APiAL

rns you straight back to direct mode with the DIRECT
ing a few Basic commands at this point. You can see the

a u t o m a t i c a 11 y a«
system,, So ther;
Unless you wish

's no need for any special initialisation proceciures.
to restrict the amount of hardware sprites it's safest

to stick to just computed sprites in your programs. Notice how we've
ANAL program using the AMAL ON command. This has the

format:

AMAL ON [prog]

"prog" is the njwnber of a single AMAL program,, If it's omitted,, then
all your AMAL| programs will be executed at once!

AMAL tutorial

We'll now provide you with a guided tour of the AMAL system. This
allows you to sjlowly familiarise yourself with the mechanics of AMAL
programs, without having to worry about too many technical details,,

seing we'll be concentrating on sprits movements, but
Dies can also be applied to bob or screen animations,,

For the time
the same princi

Start off by loading some examples into memory,, These can be found in
in the SPRITES folder on the AMOS data disc. To get a directory of
Sprite files type the following from the direct windows;

Dir "AMJ)S_PATA!" .

To load a spritj? file, type a line like; .
. . - • • ' . ' • • • '

. • • • • ' - •

Load "AM0S_.DATAsSprites/0ctopus.abk"

Moving an objec

ex DeAs you would
you. to move you
of these involvi

w, h, n

ect from a dedicated animation language, AMAL allows
- objects in a variety of different ways. The simplest
s the use of the Move command.

Move (move o bj ec t)

i he 11 command moves an object w units to the right and h units down in
exactly n movement steps. If the coordinates of your subject were
(X,Y)j, then the1 object would progressively move to X+W,Y+H.

M 100,100.100 would move it to 200,,200. The speed of this motion
depends on the number of movement steps. If n is large then each

177

178

individual sprite movement will be small and the sprite will move very
slowly,. Conversely? a small value for n results in a large movement
steps which jerk the sprite across the screen at high speed,. Here are
some examples of the Move command.

Rem Thi£ moves an octopus down the screen using AMAL
Load "A!tlOS_pATft:Sprites/Octopus.abk" s Get Sprite Palette
Sprite £,300,0,1
Amal 8, til 0,250,50" s Amal On 8 : Wait Key

Rem Moves octopus down and across the screen
Load "AIIOSJDATAsSprites/Octopus.abk" s Get Sprite Palette
Sprite
Afltal 10

Rem Dem

L0,150,150,1
"M 300,-100,50" :: Amal On 10 s Wait Key

instrates multiple Move commands.

Sprite
Amal 1.1.

Notice how we'v*
"ove" Ar& in lc

Load "AfiOS_DATA!Sprites/Octopus.abk" 5 Get Sprite Palette
>? 300,0,50 ; Move -300,0,50" . . '\
LI,150,150,1
,M$: Amal On 1.1. s Wait Key

; expanded M to Move in above program. Since the letters
ner case, they will be ignored by the AMAL system,.

At first glance, Move is a powerful but unexciting little
instruction. ItJ's ideal for moving objects such as missiles, but
otherwise it's pre11y un :i.nspi r ing „

Actually noth
parameters in t
You can also us
a variety of us

Lng could be further from the truth. That's because the
ie move instruction Are not limited to simple numbers.
complex arithmetical expressions incorporating one of

;ful AMAL functions., Example:

Load "AJ10S_,DATAsSprites/0ctopus.abk" : Get Sprite Palette
Sprite JL2,150,150,1 s Amal 12,"Move XM-X,YM--Y,32"
Amal On! 12 : Wait Key

This smoothly m
and Y hold the

Dves computed sprite 12 to the current mouse position. X
roordinates of your sprite,, and XM and YM Are functions

returning the current coordinates of the mouse,,

It's possible to exploit this effect in games like Pac-Man to
make? your objects chase the player's character. Examnle:

Load Iff "AM0S_DATA5lFF/Frog._Screen.IFF",l .
Channel!1 To Screen Display 1
Amal 1,]'Move 0,-200,50 5 Move 0,200,50"
Amal On

Channel assigns
discussing this
is:

1 : Direct

an AMOS program to a particular object. We'll be
command in detail slightly later, but the basic format

179

CHANNEL:p TO object n :

"p" is the number of your AMAL. program. Allowable values range from 0
to 63, although;only the first 16 of these programs can be performed
using interrupts. . •

"object" specifies the type of object you with to control with your

Sprite (values >7 refer to computed sprites)

Bob ! (blitter object)
Screen Display (used to move the screen display)
Screen Offfset (Hardware scrolling)
Screen s|ize (Changes the screen size using interrupts)
Rainbow ! (Animates a rainbow effects

"n" is the numbejr of the object to be animated. This object needs to be
subsequently defined using the SPRITE, BOB or SCREEN open instructions.

Animation

Anim (animate an object)

H n ,,(image,deia>j) (image,delay) .,,., .

The Anim instruction cycles an object through a sequence of images,
producing a smooth animation effect,, "n" is the number of times the
animation cycle j is to be repeated., A value of zero for this parameter
will perform thej' animation continuously.

"image" sprcifies the number of an image to be used for each frame of
your animation., j "delay" determines the length of time this image is to
be displayed on'the screen, measured in units of a 50th af a second.
Examples j

Load "AfjlOS_DATA:Sprites/Ptonkey_right-abk" s Get Spr i te Palette
S p r i t e f , 1 5 0 , 5 0 . 1 1
M * = u A n i i j » ' i 2 , (1 , 4) (2 , 4) (3 , 4) (4 , 4) (5 , 4) (6 , 4) ; "
i1$=M$+"lflove 300, , 150,, 150 ; R o v e - 3 0 0 , - 1 5 0 , 7 5 "
Amal 9, if!* •
Amai On 9
Direct

This program combines a sprite movement with an animation. Notice how
we've separated!the commands with a semi-colon. This ensures that the
two operations Are totally independent of each other. Once the
animation sequence has been defined, AHAL will immediatly jump to the
next instruction, and the animation will begin.

It's important to realize that Anim only works in conjunction with
sprites and bob^. So it's not possible to animate entire screen with
this command,

Simple Loops

J label

Jump (redirects an AMAL program)

Jump provides a simple way of moving from one part of an AMAL. program
to another, "label" is the target of your jump, and must have been
defined elsewhere in your current program. All AilAL labels are defined
using a single uppercase followed by a colon., like instructions, you
can pad them out with lower case to improve readability.

Remember that each label is deinfed using just a *single* letter. So
"Ss" and "Swoops" refer to the same label! If you attempt to define two

180

labels starting with an identical letter, you'll be presented with a

"label already defined in animation string" error,,

Eaach AMAL program can have its own unique set of labels. It's
perfectly acceptable to use the identical labels in several different

p r o g r a m s. E x a m p 1 e: • •

Load "AMtj)S_DATAsSprites/Octopus.abk" ' , ':
Get Sprite Palette . ;

For S~8 -to 20 Step 2 : Rem Set up ? computed sprites
Sprite £,200,(S-7)*13+40,l

N e x t S | •• •• ' .. '••'•."

Rem : Woifj let's create seven AMAL. programs

For S=l to ?
Channel |S To Sprite 6+(S*2)
PI$="Anii | t 0 , (i , 2) < 2 , 2) (3 , 2) (4 , 2) ; L a b e l : Move " + S t r * (S * 2) " + 5 0 , 7 ; "
Amal S,lf!$

Next S ;
Rem OkayL now animate it all!
Amal On e Direct -•'•...•

I

Since AMAL commands are performed using interrupts, infinite lopos
could be disastrous. So a special counter is automatically kept of t

181
the

number of jumpsi in your program,, When the counter exceeds ten, any
further jumps will! be totally ignored by the AHA!... system.

NOTE: if you fely on this system, and allow your programs to loop
continually, uoj.i'11 waste a great deal of the Amiga's computer power,
In practice., itj's much more effecient to limit yourself to just a
single jump perj VBL. This can be achieved by adding a simple PAUSE
comand before each Jump in your program. See PAUSE for more details.

Variables and expressions

Let (assigns a value to a register)

L register-expression "..••'- .. •

The L instruction assigns a value to an AMAL register. The action is
very similar to normal Basic, except that all expressions &re evaluated
strictly from left to right,, . •

Registers are integer variables used to hold the intermediate values
in your AMAL programs,, Allowable numbers range between ••-32763 to +32768.
There are three basic types of register;

Internal regi sters

Every AMAL program has its own set of 10 internal registers. The
names of these registers start with the letter R, followed by one of
the digits from 0 to 9 (R0-R9). Internal registers are like the local
variables inside an AMOS Basic procedure,, .

External registers

ticternal registers are rather different because they retain their
values between separate AMAL programs. This allows you to use these
registers to pass information between several AMAL routines. AMAL

provides you with up to 26 external registers,, with names ranging
from RA to RZ. The contents of any internal or external register can

be accessed directly from your Basic program using the AHREB function

Special registers

Special registers &r<s a set of three values which determine the
status of youtf object. X,Y contain the coordinates of your object,, By
chanaing these; registers you can move your object around on the
s c r e e n . [E x l

Load "AiiOSJ)ATAsSpr:Ues/F>og_j3prites..abk'' " Channel 1 To Bob i
Flash Off : Get Sprite Palette s Bob 1,0,0,1
Amal 1, "Loops Let X=X+1 s Let Y-Y+l; Pause;; Jump Loop"

Amal On 1 ; Direct . .

"A" stores the number of the image which is displayed by a sprite or
bob. You can alter this value to generate your own animation sequences
like so:

Load "AI10S_DATA:Sprites/Frog_Sprites.abk" : Get Sprite Palet te
Flash Off ; Channel 2 To Bob 1 5 Bob 1,300,100,1
i1$="Loop; Let A=A+1 ; " • .".
M$=M$+"for R0==l To 5 ;; Next R0 ; Jump Loop" .
Amal 2,!j1$:

Afflal On! 2 i Direct . ~ • ' Y-

Th& For To Next lop will be explained in more detail below. It is used
here to slow dojrfn each change to Bob l's image. When the "Next" of the
loop is execute^, Ail A I. won't continue until a vertical blank has
occurred. Also note the use of ";" to separate the AMAL instructions -
although a space " " will serve just as well.

Operators

AMAL expressions can include all the normal arithmetic operations,
except MOD., You! can also use the following logical operatoins in your
calculations:

& ! Logical AND .
! ; Logical OR .

Note that it's not possible to change the order of evaluation using
brackets "()" as this would slow down your calculations considerably
and thus reduce the allowable time in the interrupt. Type the following
examples

Load "A(10S_DATA:Sprites/0ctopus.abk" s Hide
Get Sprite Palette
Sprite 8..X Mouse,Y Mouse, 1
Amal 8,"Loop:: Let X=XM ;' Let Y=YM 5 Pause ; Jump Loop"
Amal On 8

Load "AM0S_DATA:Sprites/0ctopus.abk" s Hide
Get Sprite Palette
Sprite 8,X House,,Y Mouse., 1
Amal 8,"Ani(n 0, (1,4) (2,4) (3.4) (4,4) ; Loops Let X=XM 3 Let

Y=YM 1 Pause ; Jump Loop"
Afnal On; • -

The above examples effectively mimic the CHANGE MOUSE command. However
L h i !5 is y t^r t GJ m :i. s m u c h more? p o w e r f u X <s :r» y o 1.1 c: t\ n e? <A 3 :i- X y m o v e b o b s ., <7. <s tn p u t &? d

sprites, or even screens using exactly the same technique.

1 ft!
Makinq decisions 1 O°

If (branch within an AMAL string)

If test Jump

This instruction allows you to perform simple tests in your AMAL
programs. If thi> expression test is -1 (true) the program will jump to
label L, otherwise AMAL will immediately progress to the next
instruction. Note that unlike it's equivalent., you're limited to a
single jump operation after the test.

It's common practice to pad out this instruction with lowercase
commands like "then" or "else". This makes the action of the command
rather more obvious. Here's an example; •

If X>100 then Jump Label else Let X=X+i . \

"test" c&n be ai!iy logical expression you. like, and may include;

<> Noti equals .. .

< Lesf; than
> Greater than
= Equals ,

Examples

Load "A!flOS_.I)ATAsSprits/Octopus,,abk" -,
Get Sprite Palette . ,•
Sprite $,130,50,1 - ;
C*="Main; If X)1>100 Jump Test:: " . ' . - ' ."•."
C*=C*+"llet X=XM " ' ; •' ,
C*=C$+"fest: If YMX10Q Jump Main " .

. C*=C*+"Let Y=YM Jump Main" ' : .• : ,
Amal 8,C$; Amal On : Direct ; . :

WARNING! Don't try to combine several tests into a single AMAL
expression using "&" or "I". Since expressions Are evaluated from left
to right, this mill generate an error. Take the expressions
XM00JYM00. This is intended to check whether X>100 OR Y>100. In
practice,, the expression will be evaluated in the following order;

X>100 May be TRUE or FALSE • „• 184
!Y :0R result with Y ' •
>10() :Check if (Y>100 j Y)>100) : '';

The result from! the above expression will obviously be no relation to
the expected value. Technically-minded users can avoid this problem by
using boolean algebra. First assign each test to an single AHA!...
register like so: . . .

Let R0=X>100; Let Rl=Y>100 ' :

Now combine these tests into a single expression using J and &. and use
it directly in your If statement.

If R0 ! Ri Jump !... .„ . :

This may look a little crazy., but it works beautifully in practice.

For To Next (loop within AMAL.5

For reg-start To end

Next req j This implements a standard F0R...MF.XT
loop which is almost identical to its

Basic equivalent. These loops can be exploited in your programs to move
objects in complex visual patterns,, " reg" may be any normal AMAL
register (R0--R9 or RA-RZ),, However you can't use special registers for
this purpose.

I

As with Basic, the register after the Next must match with the
counter you specified in the For,, otherwise you'll get an AMAL syntax
error. Also note that the step size is always set to one. Additionally,
it's possible to "nest" any number of loops inside each other.

Note that each animation channel will only perform a single loop per
VBL. This synchronizes the effects of your loops with the screen
display, and avoids the need to add an explicit Pause command before
each Next.

Generating an attack wave for a game

These lopes can; be used to create some quite complex movement patterns.
The easiest type of motion is in a straight line. This can be generated
using a single for... .Next loop like so;

••' Load "AhOS_DATA:Sprites/Gctopus.abk" 5 Get Sprite Palette
Sprite 8,130,60,1
C$=For R0=l To 320 5 Let X=X+1 ; Next R0" 5 Rem Move sprite
Amai 8,C$: Amal On 8 s Direct •

You can now expand this program to sweep the object back and forth
across the screen. _

Load "AiiOS...SATA?Sprites/Octopus,,abk" : Get Sprite Palette
Sprite 8,130,60,1
C*="Loop: For R0=l To 320 p Let X=X+l 5 Next R0 ;" ; 185
C*=C$+"'For R0=.1. To 320 ; Let X=X-1 5 Next R0 ; Jump Loop"
Amal 8,C* : Amal On 8 : Direct

The first loop moves the object from left to right, and the second from
right to left. So far the pattern has been restricted to just
horizontal movements,, In order to create a realistic attack wave, it's ; •
necessary to incorporate a vertical component to this motion as well.
This can be achieved by enclosing your program with yet another loop.

Load "AM0SJDATAsSprites/0ctopus,,abk" s Get Sprite Palette , . .
Sprite 8,130,60,1 : C*=For Rl=0 To .1.0 ;" '• '. .
C$=C$+"For R0»l To 320 ; Let X=X+1 ; Next R0 ; " .
C$-C$f"Let Y--Y+8 ; "
C$=C$+"For R0==l To 320 5 Let X=X-1 ; Next R0 ; "
C*=C*+"Le t Y=Y+8 ; Next R l "
Anial 8,C$: Amal On 8

The above programs generates a smooth but quite basic: attack pattern. A
further demonstration can be found in EXAMPLE: 14.1 in the MANUAL
folder. ,

Recording a complex movement sequence

PLay

PLay path j

If you've? looked at the smooth attack waves in a modern arcade game,
and thought them forever beyond your reach, think again. The ARAL Play
command allows you freely animate your objects through practically any
sequence of movements you can imagine,. It works by playing a previously
defined movement pattern stored in the AHAL memory bank.

These patterns are created from the A HAL. accessory on the AMOS
program disc. This simply records a sequence of mouse movements and
enters them directly into the amal memory bank. Once you've created
your patterns in this way, you can effortlessly assign them to any
object on the screen, reproducing your original patterns perfectly.
Both the speed and direction of your movement can be changed at any
time from your AMOS Basic program. .,.-•'••'.-

T h e f i r s t t i m e A H A L e n c o u n t e r s a P l a y c o m m a n d , i t c h e c k s t h e A H A L '.'
bank to find the recorded movement you specified using the "path"

parameter, "path" is simply a number ranging from one to the maximum

number of patterns in the bank. If a problem crops up during this

phase, AHAL w i 11 a b o r t t h e p 1 a y ins t r u c t i o n c o m p 1 e t e 1 y,, a n d w i 11 s k i p ;

to the next instruction in your animation string,,

After the pattern has been initialised, register RO will be loaded

with the tempo of the movement. This determines the time interval ;

between each individua1 movement step„ A11 timings are measured in

units of a 50th of a second. By changing this register within your AMAL.

program, you can speed up or slow down your object movements

accordingly. • •

Note that each movement step is Kadded* to the current coordinates of

your object. So if &n object is subsequently moved using the Sprite or

Bob instructions, it will continue its manoeuvres unaffected, starting

from the new screen position. It's therefore possible to animate dozens

of different objects on the screen using a single sequence of

movements. , • . . • • . •:.'.'
* • • - .- ' •

Register Rl now contains the flag which seta the direction of your 186

movements. There Are three possible situations:

* R1 > 0 Forward :
 : ," .

A value of one for Ri specifies that the movement pattern will be ••'.. - '.

replayed from start to finish,, in exactly the order it was created
(this is the default). • •

* Rl=0 Backward * ; '

Many animation sequences require your objects to move back and forth
across the screen in a complex pattern,, To change direction, simply
load Ri with a zero. Your object will now turn around and execute your
original movement steps in reverse.

* Rl=-1 Exit '

If a collision has been detected from your AMOS program,, you'll need to
stop your object completely, and generate an explosion effect,, This can
be accomplished by setting Rl to a value of minus one. AMAL will now
abort the play instruction,, and immediately jump to the next
instruction in your animation sequence.

The clever thing about these registers is that they can be changed
directly from AilOS Basic, This lets you control your movement patterns
directly from within your main program. There's even a special AMPLAY
instruction to make things easier for you.

The PLay comand is perfect for controlling the aliens in an arcade
game. In fact, it's the single most powerful instruction in ANAL. ,

AHAL (call an AHAL program) .

A N A L n , a * • • : • • - .

AilAL n,p
A HAL. n,a* to address The AMAL command assigns an ARAL program

to an animation channel. This program can
be taken either from a string in a$ or directly from the AI1AL bank.

The first version of the instruction loads your program from the
string a$ and assigns it to channel n. at> can contain any list of AHAL
instructions,, Alternatively you can load your program from a memory • '..
bank stored in bank number 4. .

n is the number of an animation channel ranging from 0 to 63. Each
AMOS channel can be independently assigned to either a bob, a sprite or
a screen. ,

Only the first 16 AHAL. programs can be performed using interrupts. In •;•
order to exceed this limit you need execute your programs directly from
Basic using the SYNCHRO command,,

The final version of the AHAL insturction is provided for advanced
users. Instead of moving an actual object,, this simply copies the
contents of registers X,Y and A into a specific area of memory. You can
now use this information directly in your own Basic routines. It's 187
therefore possible to exploit the AM A I... system to animate anything from
a Block to a character. The format is:

AMAL n,a$ To address , • ...

"address" must be EVEN and must point to safe region of memory,
preferably in an AMOS string or a memory bank,, Every time your AMAL
program is executed (50 times per second), the fo11owing va1ues wi11 be
written into this memory area;

Location Effect . , ' • • •

Address Bit 0 is set to 1 if the X has changed
Bit 1 indicates that Y has been altered
Bit 2 will be set if the image -(A) has changed since

the 1a s t i nt er r u pt„
Address+2 Is a fcword* containing the latest value of >;
Address+4 Holds the current value of Y
Address+6 Stores the value of A

These values can be accessed from your program using & simple DEEK.,
NOTE; This option totally overrides any previous CHANNEL assignments.

Here is a full list of the available amal commands!;

H (Move)
A (Anim)
L (Let)
J (Juflip)

I (I f)
For To Next
PL (PLay)
P (Pause)

AU (AUtotest)

X (eXit)

U (Wait)

0 (On)

I) (D i r e c t)

HIIAL functions

Move del taX, deltaY,, steps
Ani(n cycles,, (image, del ay) (image, .delay)
Let reg=exp
Jump L
If exp Jump I...
For Reg-start To end ...Next Reg
PLay path
Pause

AU (list of tests)

sXit

See the Autotest System

Wait

On

Direct

Exits from an AUtotest and re-enters the
current A I'! A I... program.

Freezes your AHAL program and only
e x e c u t e s t h e A U t o t e s t,,

Activates the main program after a Wait.

Sets the section of the main program
to be executed after an autotest.

188

189

190

191

XM
YM

=J1

=XH(s,x)
-YH(s,y)
-XS(s,x)
=YS(s,y)

"BC(n ,s,, e)

Returns the X coordinate of the mouse , •.- '
Returns the Y coordinate of the mouse
Status of left mouse key (-•!,, if pressed,, otherwise 0)
Status of right mouse key
Test right joystick. Result in bit-map.
Test left joystick,, See the JOY command.

Random number. Returns a random number between ••••32767
to 32768. This number can be limited to a specific,
range using the bit-mask n. A logical AND operation
is performed between the bit mask n and the random
number to generate the final result. So setting n to
a value of 255 will ensure that the numbers will be
returned in the range 0 to 255,, Since this function has
been optimized for speed, the number returned isn't
totally random. If you need really random numbers, you
would be better to generate your values using Basic's
RND and then load them into an external AMAL register
with the AMREG function,,

Converts a screen x coordinate into a hardware coordinate.
Converts a screen y coordinate into hardware format.
Hardware to screen conversion -
Hardware to screen conversion

Check for collisions between bobs,, BC is identical to the
equivalent AMOS Basic BOB COL instruction., It checks bob
number n for collisions between bobs s to e,, If a
collision has been detected,, then BC will return a value
of - 1 , otherwise 0. This instruction may NOT be performed
within an iterrupt. So it's only available when you are
executing your AMAL routines directly from Basic with the
SYNCHRO i n s tr u c t i OR .,

Thi«r, is squiualent to -the SPRITE COL. functior L. i ke B C

192

function, it's only allows in conjuction with the SYNCHRO
instruction.

=V(v) VU-meter. The VU function samples on& of the sound
channels and returns the intensity of the current voice.
This is a number in the range 0-255. You can use this
inforfliation to animate your objects in time to the music.
An example of this can be found in EXAMPLE .1.4,.3» Also ses
the VUMETER function from AMOS Basic

Controlling AMAL from Basic 193

AilAL ON/OFF' (start/stop an AilAL program) ,

AilAL ON [n]

Once you've defined your AilAL program you need to execute it using the
AHAL ON command. This activates the AMAL system and starts your
prografiis from the first instruction,

AilAL OM activates all your programs,, The optional parameter n allows
you. start just one routine at a time?.

AilAL OFF [n] ,

Stops one or all ARAL programs from executing. These programs are
erased from meomry. They can only be restarted by redefining them again
using the AilAL instruction.

I AMAL FREEZE (temporarily freeze
an amal program)

AilAL FREEZE [n]

Stops one or more AilAL programs for running. Your programs can be
restarted at any time using a simple call to AHAL ON. Note that this
instruction should always be used to stop AMAL before a command such as
DIR is executed, otherwise problems with timing can cause visual
mishaps.

=A11REG"" (get the value of an
external AHAL register)

r=AHGER(n, [channel]) ' .-- ' . -,.•
Ai7!REG(n, [channel])--expression : ,' • ; -

The AilREG function allows you to access the contents of internal and
external AMAL register directly from within your Basic program,,

"r." is the number of the register,, Possible values range from 0 to 25
with zero representing register RA and twenty-five denoting RZ.

By using the optional "channel" parameter you can reference any AilAL
internal register. In this mode "n" ranges between 0 and 9 representinq
R0 to R9.

The following ©Xamples shows how it is possible to retrieve a
sprite's current X-position from Basics

Load »AMOSJ>ATA:Sprites/Octopus.abk" : Get Spr i te Palette
Channel 1 To Sprite 8 : Sprite 8,100,100,,!

At="Loop: Let RX=X+1; Let X=RX; Pause? Jump Loop"

Amal 1,A* s Amal On ; Curs Off

Do
Locate 0,0

Z~Asc("X")-65 s Rern Note the use of ASC to get the register

Print: Amreg(Asc("X")-65)

Loop :

! AIIPLAY (con t ro 1 an an i ma t i on . ;
produced with PL ay) . .''

AII PL. AY tempo ..direction [start TO end]) - ! .

Any movement sequences you've produced using the AI1AL PL. command are
controlled through the internal registers R0 and Rl. Each object will
be assigned it's own unique set of APIAL registers. So if you're
animating several objects, you'll often need to load a number of these
registers with exactly the same values.

Although this can be achieved using the standard AHREG function, it
would obviously be much easier if there was a single instruction which •
allowed you to change R0 and Rl for a. whole batch of objects at a time.
That's the purpose of the AMPLAY command. - -..'

AilPLAY takes the "tempo" and "direction" of your movements, and loads
them into the registers R0 and Rl in the selected channels.

"tempo" controls the speed of your object on the screen- It sets a
delay (in 50ths of a second) between each successive movement step,

"direction" changes the direction of the motion. Here's a list of the
various different options.:

Value Direction •-.'-.

X) Move the selected object in the original movement direction.
0 Reverses the motion and moves the object backwards

-1 Aborts movement pattern and jumps to the following
instruction in your A HAL animation sequence,.

As a default, this instruction will affect ail current animation
channels. This can be changed by adding some explicit "start" and "end"
points to the command, "start" is the channel number of the first
object to be adjusted., "end" holds the channel number assigned to the
last object in your list. Mote that either the "tempo" or the
"direction" can be omitted as required. Examples;;

Am pi ay ,0 :; Rem reverse your objects
Amp 1 ay 2, s R>.?m S1 ow down you r movemen t pa 11erns
Amplay ,-i 3 To 6 s Rem stop movements on channels 3,4,5 and &.

-CHANAN (test AI1AL animation) . 1 9 5

s:=CHANAN(channel)

This is a simple function which checks the status of an AMAL animation
sequence and returns -1 (true) if it's currently active or 0 if the

animation is complete,, "channel" holds the number of the channel to be

tested„

=CHANMV (checks whether an object

is still moving)

s~CHANMV(channel)

Returns a value of -1 if the object assigned to "channel" is currently

moving, otherwise 0 (false).

This command can be used in conjunction with the AMAL Move
instruction to check whether a movement sequence has "run out" of
steps. You can now restart the sequence at the new position with an
appropriate movement string if required,, Example:

Load nAMOSJ>ATA;;Sprites/l1ankey_...right»abk" s Get Sprite Palette

Sprite 9..i50,50,11
M*=flove 300,150,150; Move -300,-150,75"
Amal ?,ivi* s Amal On :

While C h a n m v (9) . • ,• ;

W e n d . • • • • .

Print "Movement complete"

APIAL errors

=A!1ALERR (return the position of an error) .

p=AMALERR . ' ; :

Returns the position in the current animation string where an error has
occurred. Careful inspection of this string will allow YOU to quickly -,. .
correct your mistakes. Examples

Load "Ai10S_DATA3Sprites/0ctopus,abk11 . , :

Spri te 8,100,100,1 : ' ' '. •
A*="L: IF X=300 then Jump L else X=X+1; Jump L" :
Amal 8,A$

This program will generate a syntax error because IF will be . >
interpreted as the two instructions I and F,, To find the position in
the animation string of this error, type the following instruction from
the direct window.,

Print f!id$(A$,Amalerr,Amaller + 5) -•• :

Error messages , ; 196

If you make a mistake in one of your AMAL programs, AMOS will exit back
to Basic with an appropriate error message,, Here's a full list of ths
errors which can be generated by this system, along with an explanation
of their most likely causes.

Bank not reserved;; This error is caused if you attempt to call the
PLay instruction without first loading a bank

containing the movement data into memory. This should be
created with the AHAL accessory program. If you're not using

PLay at all then check that you've correctly separated Any
Pause and Let instructions.

Insturction only valid in Autotest;; You've inadvertently called either
the Direct or the eXit

instructions from your main AI1AL program.

Illegal instruction in Autotests Autotest may only be used in
conjunction with a limited range of

AMAL commands. It's not possible to move or animate our
objects in any way inside an autotest. So check for erroneous
commands 1 i ke M o v e,, A n i m o r F o r « „ . We x t „

Jump To/Within Autotast in animation string: The commands inside an
autotest function &re

completely separate from your main AHAL program. So AHAL does
not allow you to jump directly inside an ALitotest procedure.
To leave an autotest,, and return to your main AMAL program you
must use either eXit or Direct.

Label already defined in animation strings You've attempted to define
the same label twice in

y o u r' A11A L p r o g r a m,, A11 A11A!... 1 a b e 1 s c o n s i s t o f j u s t a single
CAPITAL letter. So "Test" and "Total" &re just different
versions of the same label (T). This error is also generated
if you have accidentally separated two instructions by a ":"
(colon). Use a semi-colon instead,,

Label not defined in animation strings This error is generated when
you. try to jump to a label

which doesn't currently exist in your animation string.

Next without For in animation strings Like it's Basic equivalent each
For command should be matched

by a corresponding Next statement. Check any nested loops for
an spurious Next command.

Syntax error in animation strings You've made a typing mistake in one
of your animation strings. It's easy

to cause this error by accidentally entering an AMAL
instruction in full,, just like its Basic equivalent.

Animation channels . 197

Amos allows you to execute up to 64 different AMAL. programs
simultaneously. Each program is assigned to a specific animation
channel.

Only the first 16 channels can be performed using interrupts. If you
need to animate more objects you'll have to turn off the interrupts
using SYNCHRO OFF. You can now execute the AMAL programs step by step
using an explicit call to the SYNCHRO command in yur main proqram loop.
As a default,, all interrupt channels are assigned to the relevant
hardware sorite. . .

CHANNEL (assign an object to an AMAL channel)

C! -I A kIKl C" L. .--, T O C-J b _-; «=> c +_

The CHANNEL command assigns an animation channel to a particular s< re en

related "object". In ARAL.,, you're not restricted to a single channel
per obiecU Any single screen object can be safely animated with
several channels if required,. There are various different forms of this
instruction»

Animating a computed sprite

CHANNEL n TO SPRITE s .

This assigns sprite number s to channel n„ As a default, channels 0-7
are automatically allocated to the equivalent hardware sprite, and 8-15
are reserved for the appropriate computed sprites.

In order to animate the computed sprites from 16 onwards, you'll need
to allocate them directly to an animation channel with the CHANNEL
command. As normal , sprite numbers from 8 to 63 specify a computed
sprite rather than a single hardware sprite. For example5

Channel 5 To Sprite 8 ;: Rem Animates Computed sprite 8 using
Channel 5,,

The X,Y registers in your AI1AL program now refer to the hardware
coordinates of the selected sprite., Similarly the current sprite image
is held in register A.

Animating a blitter object

CHANNEL, n TO BOB b -

Allocates blitter object b to animation channel n. This object will be
trei\ted in an identica 1 way to the equiva.1 ent hardware sprite. The on 1 y
difference is that registers X and Y now contain the position of your
bob in fcscreen* coordinates. , . . •-•

Note that if you've activated screen switching with the DOUBLE' BUFFER
command, this will be automatically used for all bob animations.

Moving a screen 198

AMOS Basic allows you to freely position the current screen anywhere on
your TV display,. Normally this is controlled with the SCREEN DISPLAY
instruction. However, sometimes it's useful to be able to move the
screen using in terr upts.,

CHANNEL n TO SCREEN DISPLAY d

This sets the channel n to screen number d,. Screen d can be defined
anywhere in your program. You'll only get an error if the screen hasn't
been opened when you start your animation.

The X and Y variables in A PI At. now hold the position of your screen in
hardware coordinates. Register A is *not* used by this option and you
can't animate screens using Anim. Otherwise all standard AilAL
instructions can be performed as normal,, So you can easily use this
system to "bounce" the picture aroud the display,, Examples:

Load Iff "AMOS J)ATA:IF"F/Frog_.sc:reen. IFF",! ' ' •
Channel 0 To Screen Display 1

Amal 0,"Loops Hove 0,200,100 ; Hove 0,-200,100 ; Jump Loop"

•Amal On 0 s Direct

Load Iff "AMOS DATA; IFF/Froq_screen ,. IFF" , 1

Channel 0 To Screen Display 1

Rem Screen can only be displayed at certain positions in the X

Arnal 0,"Loops Let X=XM; Let Y---YH; Pause; Jump Loop"

Amal On s Direct

For a further example of this technique, load EXAMPLE;: 14 ,,4,, This
demonstrates how the SCREEN DISPLAY can be used in conjunction with the
menu commands. to slide the menu screen up and down your display., It's
similar to the display system found in Magnetic. Scrolls' excellent
series of adventures.

Hardware scrolling

Although hardware scrolling can be performed using AMOS E<asic's SCREEN ' •
OFFSET command, it's often easiest to animate your screens using AMAL • l

instead as this generates a much smoother effect.

CHANNEL n TO SCREEN OFFSET d '

This assigns AMAL program number n to a screen d, for the purpose of ,
hardware scrolling. The X and Y registers now refer to the section of • ;
the screen which is to be displayed through your TV. Changing these \
registers will scroll the visible screen Area around the display. • '•
Here's an examples , •

• i

Screen Open 0,, 320,500,32, low res s Rem Open an extra tall screen
Screen Display 0,,45,320,250 . »
Load Iff "AMOS_DATA:iFF/Magic..screen.IFF" , j
Screen copy 0,0,0,320,250 To 0,,0,251 • ; . \
Screen 0 s Flash Off s (Set Palette (0) . [
Channel 0 to Screen Offset. 0 :-
Amal 0,"Loops Let X=XM-i28; Let Y=YM-45; Pause; Jump Loop"
Amal On s Wait Key . .

This program allows you to scroll through the screen using the mouse.
Try moving the mouse in direct mode. For a further example of hardware i
scrolling, see EXAMPLE 14.5 t

Changing the screen size ' 199

CHANNEL n TO SCREEN SIZE s . '

This allows you to change the size of a screen using AMAL. s is the
number of the screen to be manipulated. Registers X and Y now control
the width and height of your screen respectively. They're similar to
the W and H parameters used by the SCREEN DISPLAY command,, Examples

Load Iff "AflOSJ)ATA:IFFYMagic:screen.IFF" ,0
Channel 0 to Screen Size 0
Screen display 0,,,320,1 s Rem set the screen size to 1

. Af-Loop; For R0=0 To 25S ; Let Y=RG ; Next ROs "
A$=A*+"For R0=0 To 254; Let Y=255-R0- Next RO5 J Loop"
Amal 0,A$: Amal On s Direct

Rain bows

CHANNEL n TO RAINBOW r

This option generates a rainbow effect within an A HAL program. As usual
n is the number of an an i mat ion channel from 0 to 63.. r is an
identification number of your rainbow (0-3)«

X holds the current BASE of your rainbow.. This is the first colour of
your rainbow palette to be displayed,, Changing it will make the rainbow
appear to turn. Y contains the line on the screen at which the rainbow
effect will start,, If you alter this value., the rainbow effect, will
move up or down. All coordinates are measured in ^hardware* format,,

Register A stores the height of your rainbow on the screen. See the
AMOS Basic RAINBOW command fore more details,,

Advanced tehcniques

The AUTOTEST system , • •

Normally ail AMAL programs are performed in strict order from start to
finish. Inevitably some commands such as Move and For,»..Next will take
s e v e r a 1 s e c o n d s t o c o m p 1 e t e. A11 h o u g h t h i s w i 3,1 b e f i n e i n t h e v a s t
majority of cases it may lead to significant delays in the running of
certain programs. Take the following simple programs

Load "AMOS.._DATA;;Sprites/Octopus,,abk" s Get Sprite Palette
Sprite 8,130,50,1
Amal 8,"Loop: Let RO^Xii-X:; Let Rl^YH-Y; Hove R0,Rl,50; Jump Loop"
Amal On r. Direct.

As you move the mouse;, the sprite is supposed to follow it around on
the screen. However in practice the response time is quite sluggish,
because the new values of XII and Yi'i are only entered after the sprite
m o v e m e n t has t o t a 11 y f i n i s h e d „ T r y m o v i n q t h e m o u. s e i n a c i r c 1 e „ T h e
octopus is completely fooled!

Auto test, solves this problem by performing your tests at the start of
every VBL, before continuing with the current program. You tests now
occur at regular 1/50 intervals., leading to a practically installtanous
response:

Auto test commands •'"..,• ' 200

The syntax of Autotest is; ;;. '

AUtotest (tests) ;

"tests" can consist of any of the following AMAL commands.

Let reg=exp

This is the standard AMAL. Let instruction, It assigns the result
of an expression to register "reg",.

Jump label

The Jump command jumps to another part of the current autotest.
"label" is defined using the colon "s" and KHUST* lie inside the

autotest brackets,,

eXit

Leaves the autotest and re-enters the main program from the point

it left off,,

Wait

If

Wait turns off the main AI1AL program completely, and only executes
the Autotest.

In order to simplify the testing process inside an autotest routine
there's a specially extended version of the AHAL If statement* This
allows you to perform one of three actions depending on the result
of the logical expression "exp".

If exp Jump L (Jumps to another part of the autotest)
If exp Direct L (Chooses part of the prog to be executed after AU) 201
If exp eXit (Leaves autotest)

On

Restarts the main program after a previous Wait instruction,, This
lets you wait for a specific event such as a mouse click without
wasting processor time.

Direct label

Direct changes the point at which the main program will be resumed
after y o u r t est. A M A L w i 11 n ow j u m p t o t h i s po i n t a u to m a t i c a 11 y a t
the next vertical blank period. Note that label fctnust* be defined
outside the Autotest brackets.

Inside Autotest

Here's the previous example rewritten using the Autotest feature

Load "AiiOS._DATAsSprites/octopus,,abku • '
Sprite 8,130,, 50,1 s Get Sprite Palette
A$="AUtotest (If ROOXil Jump Update" • "• " • \
A*-A$+"lf R1OYPI Jump Update else eXit"
AA+!1Update:; Let R0=XM; Let Ri.~Yi1; Direct 11)" s Rem End of AD
A*=A$ + "!1s Move RQ~X.R1--Y,,2O Wait;" :: Rem Try changing 20 to

different values!
Arnal 8,A$ s Amal On

The sprite now smoothly -follows your mouse, no matter how fast you move
it. The action of this program is as follows:

Every 50th of a sec the mouse coordinates &TB tested using the XM and
YM functions. If they are unchanged since the last test, the Autotest
is aborted using the eXit command. The main program now resumes
precisely where it left off.

However if the mouse has been moved, the autotest routine will
restart the main program again from the beginning (label It) using the
new coordinates in XII and YM respectively,

Timing considerations

' • UPDATE EVERY (save some time for

your Basic prog rams)

UPDATE EMERY n

Although most ARAL programs are performed practically instantaneously,

any objects they manipulate need to be explicit;/ drawn on the Amiga's

screen.

The amount of time required for this updating procedure is
unpredictable and can vary during the course or your program., This can
lead to an annoying jitter in the movement patterns of certain objects™

The UPDATE EVERY command slows down the updating process so that even
the largest object can be redrawn during a single screen update., This
regulates the animation system and generates delightfully smooth
movement effects,,

n is the number of vertical blank periods between each screen update.
In practice you should start off with a value of two, and gradually
increase it until movement is smooth.

One useful side effect of UPDATE EVERY, is to reserve more time for
Basic to execute your programs™ With a judicious use of this
instruction, it's sometimes possible to speed up your programs by as
much as 302, without destroying the smoothness of your animation
sequences,,

Beating the 16 object limit' , 201

SYNCHRO (execute an ANAL program directly)

SYNCHRO [ON/OFF]

Normally AMOS Basic will allow you to execute up to 16 different AMAL
programs at a time., This limit is determined by the overall speed of
the Amiga's hardware. Each AMAL program takes its own slice of the
available processor time. So if you're using the standard interrupt
system, there's only enough time to execute around 16 separate
prog rains „ . ,

The SYNCHRO command allows you to exceed this restriction by
executing your AMAL programs directly from Basic. Instead of using
interrupts, all AMAL programs are now run using a single call to the
SYNCHRO command., Since AMAL programs execute far faster than the
equivalent Basic routines, your animations will still be delightfully
s m o o t h,. B u t y o u w i 11 n o w a b 1 e t o d «-:• c i d e w h e n a n d w h e r e y u r A11A L
routines will be performed in your program.

One additional bonus is that you can now include collision detection
commands such as Bob Col or Sprite Col directly in your AMAL routines.
These are not available from the interrupt system as they make use of
the Amiga's blitter chip. This would be impossible using iterrupts.

£? & f o r G? c a l l in a SVKlCi-iPO yir,t.x -f:i rs -^ n<»e* d '{-. <-i h i r f i c%-p-f t h o :!. ,-, +. <;> i- y i.i p -L *r, w :i, \ h

SYNCHRO OFF. It's imporatnt to do this *before* defining your AMAL
programs, otherwise you won't be allowed to use channel numbers greater

than 15 without an error.

Due of the sheer power of the animation system,, it's nearly possible
to write entire arcade games completely in AI1AL. This leaves your Basic
program with simple jobs such as managing the hi-score table and
loading your attack waves from the disc. The results will be
indistinguishable from pure machine code, A good example is Cartoon
Capers, the first commercial games release that's written entirely in
AMOS., .

A demonstration of SYNCHRO can be found in EXAMPLE 14,6.

STOS compatible animation commands

The original STOS Basic included a powerful animation system which
allowed you to move yoifr sprites in quite complex patterns using
interrupts. At the time, these commands were hailed as a breakthrough™

Although they've now been overshadowed by the AMAL system,, they do 203
provide a simple introduction to animation on the Amiga. So AMOS
provides you with the entire STOS animation system as an extra bonus!

If you're indenting to convert STOS programs to AMOS., you'll need to
note the following points:

* Unlike STOS, the movement patterns in AMOS Basic can be assigned to
any animation channel you like. The Hove commands can therefore be
used to move bobs, sprites or screens, using exactly the same
techniques.

As a default, all animation channels are assigned to the
equivalent hardware sprites. In practice you may find it easier to
substitute blitter objects as these are much close to the standard
STOS Basic sprites. Add a sequence of CHANNEL commands to start of
your program like so: ••• • .

Channel 1 to bob 1
Channel 2 to bob 2

Don't forget to call DOUBLE BUFFER during your initialisation
procedure, otherwise your bobs will flicker annoyingly when they're
moved.,

* The same channel can be used for both STOS animations and AMAL
prog rams., So :i. t' s easy to ex tend you.r prog rams onee they've been
succesfully converted into AMOS Basic. The order of execution is;

AI1AL

M O V E X " . •••'• . . ; - . .;

MOVE Y
AMIM :

MOVE X (move a sprite horizontally)

MOVE X n,m* :

Defines a list of horizontal movements which will be subsequently
performed on animation channel number r,..

n can range from 0 to 15 and refers to an object you have previously
assigned using the CHANNEL command. m$ contains a sequence of

instructions which together determine both the speed and direction of
your object, These commands are enclosed between brackets and are
entered using the following format;

(speed.step,count)

There's no limit to the number of commands you can include in a single
m o v e m e n t s t r ing, o t h e r t h a n t h e a m o u n t o f a v a i 1 a b 1 e in e m o r y „

"speed" sets a delay in 50ths of a second between each successive
movement step. The speed can vary from 1 (very fast) to 32767
(incredibly s l o w) ,

"step" specifies the number of pixels the object will be moved during
each operation,, If the step is positive the sprite will move to the
right,, and if it is negative it will move left.

The apparent speed of the object depends on a combination of the
speed and step size. Large displacements coupled with a moderate speed
will move the object quickly but jerkily across the screen.. Similarly a
small step size combined with a hiqh speed will also move the object
rapidly, but the motion will be much smoother,, The fastest speeds can
be obtained with a displacements of about 10 (or - 1 0) .

"count" determines the number of times the movement will be repeated,.
Possible values range from 0 to 32767. A count of 0 performs the
fnovernent pattern indefinitely.

In addition to the above commands, you can also add one of the
following directives at the end of your movement string.

The most important of these extensios is the L instruction (for
loop), which jumps back to the start of the string and returns the
entire sequence again from the beginning. Example:

Load "A!10S._.DATAsSprits/0ctopus,,abk" : Get Sprite Palette
Sprite 1,130,100,1 : Rem Define Sprite 5
Move X l,"(l,5,A0)(l,-5,,60)L" ,
Move On

The E option allows you to stop your object when it reaches a specific
point on the screen., Change the second to last line in the above
example to; •

Move X l,"(l,5,30)E100"

Note that these end-points will only work if the x coordinate of the
object exactly reaches the value you originally designated in the
instruction. If this increment is badly chosen the object will leap
past the end-point in a single bound,, and the test will fail,, Example:

Load "Ai10S_DATA:Sprites/0ctopus.abk" s Get Sprite Palette
Channel 1 To Sprite 8 : Channel 2 To Sprite 10
Print At(0,5)+"Loop:irtg OK"
Sprite 8,130,100,1
Move X 1," (1,10,30) (1,,-10,30)1..."
Move On
Print At(0,10)+"l\low press a key" : Wait Key
Sprite 10,140,150,2
Move X 2,"(li.i5,26)L" s Move On 2
Print At < O,, 15) + "Oh dear!" ;; Wait Key •

MOVE Y (Move an vertical object)

HOVE Y nsm$

This instruction complements the MOVE X command by enabling you to move
an object vertically along the screen. As before,, n refers to the
number of an animation sequence you've allocated using the CHANNEL
commandj, and ranges between 0 and 15.

m$ holds a movement string in An identical format to HOVE X,, Positive
displacements now correspond to a downward motion, and negative values
result in an upward movement. Examples;

Load "AM0S_DATA:Sprites/0ctopu5.abk" : Get Sprite Palette 205
Channel 1 to Sprite 8 : Sprite 8,130,, 10,1
Move Y 1, "10(1,1,180)1."
Channel 2 To Screen Display 0 . • ,
Move Y 2,"(l,4,25)(l,-4,25)
Move On s Wait Key

MOVE ON/OFF (start/stop movements)

MOVE ON/OFF [n] -

Before your movement patterns will be executed they need to be
activated using the MOVE ON command.

"n" refers to the animation sequence you wish to start,, and can range
f rom 0 to 15. If i t' s omi tted then a.11 your movernen ts will be activated
simultaneously.

HOVE OFF has exactly the opposite effects It stops the relecant
movement sequences in their tracks.

HOVE FREEZE (temporatily suspend sprite movements)

HOVE FREEZE [n] .. --.,.• ,

The MOVE FREEZE command temporarily halts the movements of one or more
objects on the screen. These objects can be restarted again usinq
HOVE ON.

"n" is completely optional and specifiew the number of a single
object to be suspended by this instruction,, -

=M0V 0 N (r e t u r • n mo v em e nt s t a t u s)

MOVON checks whether a particular object is being moved by the MOVE X
and MOVE Y instructions. It returns ••-:!. if object n is in motion, and 0
if it's stationary. Do not confuse this with the MOVE ON command. Also
note that M0VON searches for movement patterns generated usinq the MOVE
coii«and5, so it will not detect Any animations qenerated by riliAL «

A NIP! (animate an object)

AMI PI n,af

Automatically flicks an object through a sequence of images creating a
smooth animation effect on the screen. These animations are performed
50 times a second using interrupts, so they can be executed . •
simultaneously with your Basic programs,

"n" is the number of the channel which specifies a sprite or bob to
be animated by this instruction.

"a$" contains a series of instructions which define your animation
sequence. Each operation is split into two separate components enclosed
between round brackets, , '

"image" is number of the image to be displayed during each frame of . 206
the animation, "delay" specifies the length of time this image will be
hied on the screen (in SOths of a see.),, Examples

Load "AM0S_DATA:Sprites/(3ctopus.abk" s Get Sprite Palette
Channel 1 to Sprite 8 s Sprite 8?200,, 100,, 1
Anim 1," (1, .1.0) (2,10} (3,10) (4,10)" '.:.'•.
Anim On ; Wait Key , - •

Just as with the MOVE instruction, there's also an L directive which
enables you to repeat your animations continuously. So just change the
ANIM command in the previous example to the following!

Anirn i,"(l

ANIM ON/OFF' (start an animation)

ANIN OM/OFF [n] / ' .

AKIIPI OKI activates a series of animations which have been previously
created using the AW III command,, n specifies the number of an individual
animation sequence to be initialised,, If it's omitted, then all current
animation sequences will be started immediately,

A.MIPi OFF [n]

Halts one or more animation sequences started by ANIM ON.

; ANIM FREEZE (freeze an animation)

i ANIM FREEZE [n] -{ ; : '-•••' '

Temporarily freezes the current animation sequence on the screen,, n
j chooses a single animation sequence to be suspended. If it's not
\ included, all current animations will be affected. They can be
; restarted at any time with a simple call to the ANIM ON instruction,

IS: BACKGROUND GRAPHICS 207

Nowadays, it's not uncommon for an arc&ds gaffie to contain himderds of
different screens. With compaction,, it's possible to crap a single 32
colour screen into about 30k of memory. So 100 screens would be the
equivalent of about 3 Megabytes of data. Imagine how difficult this
would be to fit into a standard A50Q!

The classic way of avoiding this restriction, is to construct your
backgrounds out of a set of simple building blocks. Once these "tiles"
have been created, they can be placed on the screen in any order you
like. So the same set of tiles can be reused to generate a vast number
of potential screens. Each screen is now stored as a simple list of its
components, and requires a tiny fraction of the original memory,,

In order to exploit this system, you'll obviously need some way of .
defining your various screen maps. As you might have guessed,, we've
helpfully provided you with a powerful map definer accessory on the
AMOS program disc. Full details can be found in the accompanying
documentation file. ;

AMOS Basic also includes a number'of special instructions for drawing
your tiles on the screen,, These make it easy to generate the fast
scrolling backgrounds that &re the hallmark of a modern arcade game™

Icons ' " .

Icons are separate images which have been especially designed for
producing your background screens. Once you've drawn an icon, it's
fixed permanently into place. So you can't move it to a new position
using the AMAL animation system.

All icons ars stored in their own AMOS memory bank (M2). This bank is
created using the Sprite definer accessory (on the AMOS Program disk),
and will be automatically saved along with your Basic programs.

Like Bobs, Icons are displayed using the Amiga's amazing Slitter
chip. But since Icons are essentally static objects, they are usually
drawn in REPLACE mode. Your icons will therefore totally erase any
existing graphics at the current screen position.

PASTE ICON (draw an icon) " : l

PASTE ICON x,y,n

Draws icon number n on the screen at GRAPHIC coordinates x?y,. n is the
number of the icon which is to be displayed. This must have been
previously stored in the ICON bank. . * •

Icons can be freely positioned anywhere on the screen,, subject to the
normal clipping rules. Examples

Load "Ai10S..,.DATA5lcons/Nap__icons.abk"
Screem Open 0,320,256,32,Lowres s Cls 0 s Get Icon Palette
For X=l To 11 s Paste Icon X*32,0,l : Next X
FOK- V-l To A a P.r,mt<» I <:; o i. O,Y*32+li a P«:s- I. e Icon £Be,Y*SS,l

Next Y '
For X=l To 11 : Paste Icon X*32,223,1 : Next X

Note that if you're using double buffering., a copy of your icons will
'• be drawn into both the physical and logical screens. Since this is

rather slow, it's common practive to add a call to AUTQBACK 0 before
drawing your icons on the screen,, This restricts straight to the
physical screen using SCREEN COPY,, saving a considerable amount of
time.

For a further example, see the MAPVIEW program on the A11 OS DATA diss
This displays a background screen you've created using the AMOS Map
Editor.

GET ICON (create an icon) 2,08

GET ICON [s,,] i,tx,ty TO bx,by

Captures an image from the screen and loads it into icon "i". If this
icon does not presently exist, it will be created for you in bank 2,,
This bank will be automatically reserved by the system if required.

i is the number of your icon, starting from 1. tx.ty to bx,by define
the rectangular zone which encloses the selected region.

s determines the number of the screen which will be used as the
source of your image. If it's omitted, the image will be taken from the '
current screen instead,, Example;

Erase 2 ;
F*--Fsel*("#. *".,""., "Load a screen") : If F*="" Then Direct
If Exist(f$) Then Load Iff f*,0 Else Direct

',.' SH=Screen Height : H=SH/32-l : SW=Screen Width : W==SUi/32~i
For Y=0 to H v
For X=0 to W ,

Get Icon X+Y*W+1,X*32!IY*32 To X*32+3i ,Y*32+3i
Next X -

Next Y ; , . ;,
C l s 0 ' ••"•' .;

Do
Paste Icon Rnd (Sw-1) ,Rnd(SH-»I) ,Rnd/(H*W)+l ; • ;

Loop

GET ICON PALETTE (get icon colours)

GET ICON PALETTE •

Grabs the colours of the icon images in bank 2, and loads them into the
current screen palette,, This command is normally used to initialize the
s c: r e e n a f t e r you' b e loaded s o m e icons f r o m t h e d i s c „ E x a rn p 1 e:

Load "Ai10S..,.DATR:Icons/lT!ap..,iicons,,abk" .- ;•;• .
Get Icon Palette
Paste Icon 100,100,1 ' ; . .

DEL ICON (deletes icons) . 209

DEL ICON n[TO m] '

Deletes one or more icons from the icon bank, n is the number of the
first icon to be removed.

(n is the optional number of the last icon to be deleted in the list,
if it's included all the icons from first to last will be erased one
after another.

When the final icon in a bank has been deleted, the entire bank will
be removed from memory,, , " : "••:•'

, MAKE ICOW MASK (set colour zero to transparent)

MAKE ICON MASK [n] :

Normally, any icons you draw on the screen will completely replace the
existing background. The icon will seem to be displayed in a
rectangular box filled with colour zero.

If you want to avoid this effect and overlay your icons directly ove
the current graphics, you'll need to create a *mask* for your icons.
This informs AMOS that colour zero should be treated as transparent.

n is the number of the icon to be affected. If it's omitted,, a mask
will be defined for all icons in the bank. See EXAMPLE .1.5.1

Screen blocks . : . :,

AMOS Basic supplies you with a set of powerful BLOCK commands which
allow you to grab part of an image into memory and paste it anywhere on
the screen.

These instructions are mainly used for holding temporary data,
since your blocks cannot be saved along with your Basic programs.

Blocks are especially effective in the construction of dialogue
boxes, as they can be used to save the background areas before
displaying your new graphics.

They can also be exploited in puzzle games like Split Personalities.
Each block can be loaded with a single section of your image,, You can
then jumble your pictures by rearranging the blocks on the screen with
PUT BLOCK.

GET BLOCK (grab a screen block into memory)

GET BLOCK n,tx,ty,,w,h[smask]

GET BLOCK grabs a rectangular area in block number n. startinq at
coordinates tx,ty.

n is the number of the block ranging from 1-65535,, tx,, ty set the
coordinates of the top left hand corner of your block. w,y hold the
width and height of the block respectively,,

"mask" is a flag which chooses whether a mask will be created for
y o u r r, e? w b 1 o c: k „ ,

mask~-0 Replace mode. When the block is drawn on the screen,,

it will totally destroy any graphics at that current
position,

fliask~i Calculates a mask for the block. Colour zero will now
be treated as if it were transparent,,

PUT BLOCK (copies a previously created 210
block onto the screen)

PUT BLOCK n[, , x , y]

PUT BLOCK n , x , y , p l a r i e s [, m i n t e r m s]

PUT BLOCK copies block number n to the current screen,, x,,y specify the
position of your new block on the screen. If they are omitted the block
will be redrawn at its original screen coordinates,,

Note that all drawing operations will be clipped to fit into the
current screen,, starting from the nearest 16 pixel boundary.

For a demostration of the BLOCK commands see the routine in EXAMPLE
15.2. We've also provided experienced programmers with a couple of
optional extras. These a.re not needed for the vast majority of
applications, they're only required when you want to achieve weird
special effects on the screen!

"planes" holds a bit-map which sets the range of colours which will
be drawn in your block,, The Amiga's screen is divided up into segments
known as bit-planes. Each plane contains a single bit for every point
on the Amiga's screen. When the Amiga ' s hardware disp1ays this point,
it combines the bits from each plane to calculate the required colour
number. Each bi t i n "p1a n e s" rep resents t he s t a tu s of a s i ng1e
bit-plane. If it's set to one, then the selected plane will be drawn by
the instruction,, otherwise it will be completely ignored. The first
plane is represented by bit zero,, the second by bit one,, etc,

Usually, the block will be displayed in all the available bit-planes.,
The corresponds to a bit-pattern of "•; I i 1111

"fitinterm" selects the blitter mode used to copy your block on the
screen. A full description of the possible drawing modes can be found
in the section on SCREEN COPY, The best way to loearn about these
options is to experiment!

DEL BLOCK (delete a screen block)

DEL. BLOCK n

Deletes one or more blocks and restores the memory used to AMOS Basic.

DEL BLOCK Erases *all* current blocks
DEL BLOCK n Deletes block number n.

GET CBLOCK (save and compact a screen image) 21.1

GET BLOCK n,x,y,sx,sy

The GET BLOCK command saves and compacts a rectangular area of the
screen. The compaction system used by this, command has been especially

16:; MENUS

If you've used the Amiga for some time you'll already be familiar with
the idea of menus. Impossible as it seems. AMOS has taken the existing
system and improved it almost beyond recognition.

Menus can be created with up to eight separate levels, and each
individual menu item can be repositioned on the screen at will. Menu
titles can be printed in any combination of colours or styles. You can
also include bobs or icons directly in your menus using an amazing menu
definition language,,

AMOS Basic is squally impressive when it comes to reading, a menu,,
There's a buit-in interrupt-dricen ON MENU command which can
automatically branch to a selected point in your program depending on
the option selected,, Furthermore, any menu option can be accessed
directly from the keyboard using the MENU KEY instruction.

For a demonstration of the terrific effects that can be achieved with
this system;, load the program EXAMPLE 16.1. \

Using a menu

All AMOS menus &re called up by holding down the right mouse button in
the standard way,, Ones a menu has been activated you can then select an
option directly with the mouse cursor. When you release the button, the
option number you have chosen will be returned to your program,

Menus can be repositioned by placing the mouse cursor over the top
left corner of an item and holding down the LEFT button, A small box
will now appear on the menu bar which can be dragged across the screen
using the mouse, , .: •

In addition, holding down the SHIFT key will freeze a menu into
place. This allows you explore a menu without selecting any of the
various options. You can also use any of the mouse features such as
slowing or axis selection in conjunction with your menus.

Creating a simple menu

AMOS menus can be created either directly within your programs or using
a special menu definer included on the AMOS program disc.

If you've never used menus before, the? sheer variety of the available
ffl e n u c o A) m a n d s m a y s e e m a 1 i 111 e o v e r w h e 1 m i n g ,. H e r e ' s a brief
description of the basic features to provide you with a painless
introduction to AMOS menus.

Setting the title line

The first stage in the creation of a menu is to define the "ti11e
line". THe title line of a menu can be set using the I1£NU$ command. In
its simplest form this has the formats

MENU* (set a menu title)

5 '..

MENU$(n)=title* . "

MENU* creates a title line for your menu. Each heading is assigned it's • :
own individual number starting from one, and increasing from left to
right. So the leftmost title is repsresented by a one, the next title
as two, etc. , , „

The text in "title*" holds the name of the option which will be
displayed in your new menu,. Here is a simple example which constructs a
menu line consisting of just two titles; ACTION and MOUSE

Menu*(l)=" Action " .• .
Henu*(2) = " Mouse " . - ,' ! :

Note the space after "Action" •••• this will separate it from Mouse, the
next m e n u a 1 o n g . Y o u m u s t now s p e c i f y a 1 i s t o f o p t i o n s t a h e 2.1.3
associated with each of your new headings. These form a vertical bar
which will drop into place whenever a title is selected with the mouse,,

MENU$(t,o) (set a menu option)

MENU$(t.,o)=option*

This second form of MENU* defines a set of options which will be -
displayed in the menu bar,.

t is the number of menu heading which your option will displayed
under, o is the option number you with to install in the menu bar.
All options are numbered downwards from the top of the menu,, starting
from one. • . . . • • - .

The only physical limit to the size of your menu is the amount of
memory, but it's wise to restrict, yourself to less than about 10
options for each title. This will keep the complexity of your menus
d o w n t o a n a g r e e a b 1 e m i n i m u m.

"option*" holds the name of your new option,, This can consist of any
section of text you like.. For an example, try adding the following
lines to the program above;

Rem Action menu ••.'•

Menu*(1,1)=" Quit " .
•Rem House menu - . ,
Menu*(2.,1) = " Arrow " . . . -
Menu*(2,2)=" Pointer " . ' ~ .. *
Menu*(2,3)=" Clock " . / . •
Wait Key .

This specifies a list of alternatives for the ACTION and the mouse
menus. If you try to run this program as it stands, nothing will
happen. That's because the menus need to be initialised with a call to
the MENU ON command. Enter this thin above program before the Wait Key
instruction. Now run the example and select the menu items with the
mouse cursor., Remember to hold down the RIGHT mouse button first!

MENU ON (activate menu)

MENU ON

Activates a menu defined using the MENU* command. The menu line will " '
now appear automatically when ths right mouse button is pressed nv the
user. To start the previous menu, insert the following line after the ,
definition statements.

Menu On •••• ' -.;,:. ... ;: ' ' . . .

Go to the Direct window and play around with the menus. Select options 214
by pressing the right mouse button

Reading a simple menu

Once you've created your menu and activated the AMOS menuing system
you'll want to discover which options have been selected by the user.
This can be accomplished using a simple form of the CHOICE command.

-CHOICE (read a menu)

selected=CHOICE . ; . ' , . ' .^

CHOICE returns a value of -1 (true) if the menu has been highlighted by
the user, otherwise 0. It's automatically reset to 0 after each test.
It's also possible to find the title number which has been selected
using a second form of this instruction.

heagind=CHOICE(l) . . v

"heading" now contains the number of the "title" which has been
highlighted by the user. Similarly you can retrieve the actual option
number which has been chosen with a parameter of two.

item=CH0ICE(2) ;.

Try adding the following lines to the previous examples

Do

Rem If choice---! can be simplified to: If choice, as seen,,,.
If choice and choice(i):~l Then Exit
If choice(l)=2 and choice(2)<>0 Then Change Mouse choice(2)

Loop

This changes the shape of the mouse cursor depending on which option
you have chosen from the menu. A full demonstration of these menu can
be found in the file EXAMPLE 16.2.

Advanced menuing features

We will now cover some of the more advanced menuing features available
from within AMOS Basic. Used properly these A110S menus can add a whole
new dimension to your programs.

MENU* (create a menu) ;. 215

M!~ ML! * <;,;,) = n a n « a l 4 [.. sj <•> 1 e c: -t & d * 3 I." ,, i n a c: t :i, v e * "} \~ , t> a c ks.| r o u n d * !3

Defifies the appearance of each individual menu item in one of your

menus« Unlike normal Amiga menus these items are not restricted to
standard text. They can also include embedded commands which allow you
to draw bobs., icons or graphics at any point in the menu line,.

Any of the parameters in this instruction m&y be optionally omitted,
so you can change parts of a menu description independently. A value
of "" in your menu string will ERASE the existing setting. Similarly
you can retain the original value by including a comma at the
appropriate point., For example:

Menu$(l):-" Action ",,"" s Rem Erase second option
Menu$(2)=" Mouse 2 ",, s Rem Change title without altering

."••• anything else.

The position of the menu item within the actual menu is indicated using

a list of up to eight parameters separated by commas., The general

format iss

{ i t e m) / (i t e m „ o p t i 0 n) / (i t e m, o p t i o n ,, s u b o p t i o n) . . .

"normal*" is a string which sets the normal appearance of an item when
it's displayed in the menu, "selected*" changes the effect of
highlighting a menu option with the mouse,, As a default,, selected items
a r e p r i nted i n i n v e r s e t e x t „

"inactive*" changes the appearance of an item which has been
deactivated using the MENU INACTIVE command. If this string is omitted.,
all inactive imtes will be displayed in italics, "backgrounds" creates
a background for your menu items when they &re initially drawn.
Generally this will be a bo of some sort created with the internal Bar
or line commads.

For now one, we'll abbreviate these parameters using a standard
notation: ..'-.;•

setting$=[jselected*]L,inactive*][,background*]

fhe menu hierarchy

The level of an item in the menu is determined by its position in the
menu hierarchy.

Menu*(i)="Title" .. \
Menu*(I, i)="0ption 1"
Menu*(l,2)="0ptian 2" • : • V
Menu*(i,2,1)=" Item .1." -: -

This defines a simple menu. The structure of a menu is similar to that
of an a.rr&y. Each level of the menu is represented by its own dimension
in the array, and is controlled using a separate version of the MENU*
command »

The first level represents the title line which appears at the top of
your menus. It can be set using a command likes

Henu$(n):::ititle*[setting$Ii . • .

"n" now corresponds to the position of the title'from the left of the 216
screen, and setting* refers to the three optional strings which define
t h e g e n e r a l appOAF-Ar^ t -K ci -i" -ii (-. <s. m e n t i . 1 ^ •" ™ :i- < ,* p <^ •- (. ** • • t "t- <> ^ <~ ? ^- " *- t- !l «* t •'- <•• -1- *-

of your menus first as this ^dimensions* the &rr&y, All other items may
be created in any order you. wish.

Each title is associated with a list of menu options which drop into
view when the menu is selected,, These form the second level of the menu
structure and &re defined using a second version of the MENU* command,,

Henu$(n,option)~Item*[setting$.] . .

"option" holds the number of the item measured from the top left of the
menu bar. There's no limit to the number of options which may he linked
to a single title, other than the amount of available memory.

Each individual option can in turn be associated with its own sub
menus up to a total of eight levels,, . : .

IIenu$(n , option ,,sub option)=Item$[setting$]

Once you've created a menu it can be expanded or charmed at any point
in your program,, Never change the current screen while you a.re creating
a menu as this will lead to an error message. *

See EXAMPLE 16.3 ' ' . ,.. - . • :

-CHOICE (read menu)

item=CHO.ICEC(dimension)] ' •:[

The CHOICE function checks whether an option has been highlighted on
the current menu. If an item has been selected (down to the lowest
1 e v el), C H 01C E w i 1.1 r e t u r n a v a 1 u e o f -1 f o t h e r w i s e i t w i 11 b e 0 „ A f t e r
you've called this f unc ti on, the s ta t us o f t he m enu w i11 be
automatically restored to 0 (false). This stops a single menu, access
from being accidenta11y detected severa1 times„

The second form of this command returns the option selected at the
required level.

itefn-"CMOICE(dimension) - ", :

"dimension" indicates the level of the menu which is to be read. As you
m&y recall, a level number of 1 corresponds to the title line of the
menu. Similartly the levels between 2 and 8 indicate the number of an
icption which has been chosen,, If a menu item has not been selected,
"item" will be loaded with a value of zero,, For example:

M e n u * < i) = " M e n u " ; : " ' / .••'.••

Menu*(1,1)="Option 1" • • ' .
Menu*(l,2)="0ption 2" .
Menu*(l,2,l)"~"0ption 2.1" :. ' •
Menu On .
Do

If choice Then Print choices 1) ,, choic:e(2),, choice(3)
Loop .

If you wanted to implement larger menus with this system,, your program
would need to use a long list of IF,,.,.THEM statements to deal with each
and every possibility,, This would cause a small but significant delay
in your program while the menus were being read, It would also make it
very difficult to amend your program later,, Fortunately AMOS Basic

OKI MENU PROC (automatic menu selection) 217

OKI MENU PROC proci [,proc2,...]

Each title in your menu can be assigned its own procedure which will be
executed automatically whenever an option is selected by the user,, The
action of this command :i.s similar to the code below;

I f Choice . . .
If Choice(i)=l . .

Proci ' • .
Endif ' ' .. ,' ' . . • ••,
I f C h o i c e (i) = 2 . • • - • ' v - . - ' • • • . ' '

P r o c 2 , . " ' • , ' • . . •• ' . \ • •

E n d i f ' • " . • , • ' - • ' •

E n d i f • ' : ..." ••• ,. ' ' " ',-. •'•"

There is one crucial difference between the OK! MENU command and the
above instructions. ON MENU is performed 50 times a second using
interrupts and does not affect the overall running of your program.
This means that your program can be doing something totally different'
while the menus are being checked by the system,,

Whenever the user selects a menu item the required procedure will be
immediately executed with no further ation on the part of your program.
Your procedure can then use the CHOICE command to find which option has
been chosen and perform the appropriate action.

After the procedure has concluded, your program will be returned to .
the instruction following the ON MENU call. Here's an examples

Menu$(i)~"Action" : Menu$(l, 1)--"Count" s
Menu On : Rem Activate menu . .
On Menu Proc ACTION .
On Menu On : Rem Activate On Menu command

D o . - , • • • ' •

X*~Inkey$; If X$<>"" Then Print X*;: Inc kl :
Loop ,
Procedure ACTION ' \. , 218

Shared W - . '.
If Choice(2)=l '
Locate 050 ; Print "You typed "jW;

11 letters" ; W=0
On Menu On : Rem Initialise menus

Endif ; ;
If Choice(2)=2 Then Edit . . ^

End Proc

There are a couple of important points to note about this example.
Firstly, see how the on menu sequence is activated using the ON MENU ON
command. This *must* be called after the menu handling procedure has
finished as it's needed to restart the menuing system. Also note the " •;/
use of INKEY$ rather than INPUT. The INPUT command will halt the menu
checks while you &re entering a line. All other commands can be used
without problems, including WAIT, WAIT VBL and WAIT KEY. For a further
example see EXAMPLE 16.4

ON MENU GOSUB (automatic menu selection)

ON MENU GOSUB label! C,label2. .]

Enters one of a list of subroutines depending on the option which has
been selected by the user,, Once you've called this command and created
your subroutines, the menus will be checked automatically 50 times a
second» •

Note that each title on the menu line is handled by its own
individual subroutine. This differs from its AMIGA Basic equivalent
which controls the entire menu with just a single routine.

After using this command you should activate the menuing system with
a call to the ON MENU. The menus must be reinitialised in this w&y
before jumping back to the main program with RETURN. Also note that
label #11 AY NOT* be replaced by an expression as the label will only be
evaluated once when the program is run.

ON MENU GOTO (automatic menu selection)

ON MENU GOTO label! [,label2,...] '" • -

This command has now been superceded by the more powerful ON MENU PROC

and ON MENU 60SUB instructions. It's intended to provide com pa bil.it y
with programs written in STOS Basic, itiHen ever a menu is selected., the
program will jump to the appropriate label,,

ON MENU ON/OFF ([deactivate automatic . •

menu selection)

ON MENU ON •> " • • • • • • - , . . • •

Activates the automatic menuing system created by the ON MENU
PROC/GOSUB/GOTO commands. After a sub-routins has been accessed in this
way, the system will be DISABLED. So it's vital to reactivate the
system with ON MENU ON before returning to the main program.

ON MENU OFF -."•.,- .

This temporarily freezes the automatic menuing system,, It's useful when
your program is executing a procedure which needs to be performed
without interruptions - such as loading and saving information to the.
disc. The menus can be reactivated using ON MENU ON,,

ON MENU DEL (dlete the labels used by ON MENU) * 219

OKI MENU DEL • • " . . :

This erases the internal list of labels or procedures created by the ON
MENU commands™ You can now redirect your menus to another part of your
program using a further call to ON MENU. WARNING! Only use this command
after you've deactivated the menus with ON MENU OFF.

Keyboard shortcurs

Despite the undoubted appeal of menus, some users prefer to call up the
O p t i o n s of .v< pragrAffl s t r A i g K l -from -I. !•><?> U:<^y bo*it i- <i .. A l i h Q w g h t me?n\-ts -.* r v?

certainly easy for beginners, once you've familiarised yourself with a
program it can be much faster to call up an option from the keyboard.

ft

AMOS Basic: allows you to assign a keyboard shortcut to any of your f
menu items. These keystrokes are interpreted exactly as if the user had f
accessed the equivalent option from the menu. They can be used with any ..[
of the AMOS Basic menuing commands, including ON MENU. .. .• . f

MENU KEY (assign a key to a menu item)

MENU KEY(,,) TO c$ ',' . ' - • . . • ;

MENU KEYC,,) TO scan[,shift] ' '

This allows you to assign any key to any item in a previously defined
menu. The only restriction is that item you have specified must be at
the bottom level of our menu. So you can't use a shortcut to select a
sub menu as each command must correspond to a single option in the
menu,.

c$ is a string containing a single character which is to be assigned
to the menu option. Any additional characters in the string will be
ignored. ; .. ":

Each key on the Amiga's keyboard is assigned its own individual
scancode. By usinq this code you can assign keys to a menu which have
no Ascii equivalents. Here is a list of scarscodes which can be used
with your menus.

Scancode Keys . |

8 0 ~ 8 9 F u n c t i o n k e y s F 1 - F 1 0 '•,'••-'..
9 5 H e l p ••.•••-/ '...' ;

6 9 E s c ; , • " • • - • . • .

"shift" is an optional bitmap which allows you to check for control key 220
combinations such as ALT+HELP or CONTROL (-D,. The format of "shift" is;

Bit Key Tested Notes ' • . '.'•-•'.''

Only one shift key can be tested at a time

Either ON or OFF •/ • •

C- key on some keyboards

Note that if you set more than a single bit in this pattern., you'll
have to press several keys simultaneously to call up your menu item,,
Any of these short--cuts can be deactivated by using MEWL! KEY with no
parameters. For examples

Menu Key(1,, 10) : . '

With the help of MENU KEY command,, adding shortcuts to a menu is a
trivial operation, so you are strongly recommended to include them as
standard in your programs. Here is an example that checks for the
Amiga's 10 function keys; ' r

Menu* i 1 5 =•" F i i n c t i o n k..^^ " . ., .

For A=l To 10 *'•" " .' ' '
OPT$=" F"+S t r$ (A)+" "

0
1

4
5
6
7

Left
Right
Caps
CTRL
Left
Right
Left
R i q h t

SHIFT
SHIFT

Lock

ALT
ALT

AMIGA
AMIGA

flenu$(l,A)"OPT$
Menu Key(i,A) To 79+A

Next A
Menu On
Do

If Choice Then Print "You pressed function key ";Choice(2)
Loop

Menu con t roI c o mma n 6s

MENU ON (activate a menu)

MENU ON [bank] -

Activates a menu which has been previously defined in your program. The
menu will be displayed when the user next presses the right mouse
button, and the options can be selected in the usual way. If a "bank"
number is included with the instruction, then the menu will be taken
from the appropriate memory bank,, See HAKE!! MENU BANK for more details.

, - MENU OFF (temporarily deactivate a menu.) . 221

M E N U O F F . . : . . • • : • : :-

THis is the opposite of the MENU ON command. It temporarily freezes the
action of the entire menu. The menu can be restared at any time using
the MENU ON command. , • . • :, . ., • • •

MENU DEL (delete one or more menu items) .

Erases the selected menu from the Amiga's memory and restores the space
to the rest of your program. There are two possible formats.

fiENU DEL - . . ' , • - V'

Erases the enitre menu. WARNING! This command is irrevocable!

M E N U D E L (, j,} ' •••'•'''• , . '. : .;: " • ' ;

Deletes just a section of the menu. The (,,,) parameters contain a list
up to eight values separated by commas. These indicate the precise
position of the item in the menu hierarchy. For example;

Menu Del(.t) : Rem Erase title number 1 :
Menu Del(1,2) : Rem Erase option 2 of title i

MENU TO BANK (save the menu definitions
in a memory bank)

MENU TO BANK n

T h i . G i r . e t n i r i i o n A l l o u e y o u *e> m.,v>-^«» .m-. e n t i r e m & • o 1.1 - t !"•.-&• i n t o m e m o r y

bank n. If bank n already exist, you'll get a "bank already reserved"
error.

Once you've stored a menu in this way,, it will be saved automatically
along with your Basic program. By storing your menu definitions in a
memory bank, you can reduce the size of your program listings
significantly. This will free valuable space in the editors memory, and
will allow you to write longer Basic programs using exactly the same
amount of memory.

BANK I'D MENU (restores a menu definition
saved in a menu bank)

BANK TO MENU n

Sets up a menu definition from menu data stored in bank number n. You
menu will be restored to exactly the same state as it was originally
saved. If the menu is complex, this process may take a little time- To
activate y o u r n e m e n u c a 11 t h e IIE MU 0 M i n s t r u c t i o n.,

MENU CALX (recalculate a menu) ' 222

MENU CALC •

One of the nicest features of AMOS menus is that they can be easily
changed during the course of a progracn. After you've created your
initial definition you can add new items and replace existing options
as well,,

Al your menu items &rs automatically repositioned when the menu is
selected with the right mouse button,, If your menus are extremely large
this may takek a little time. MENU CALC allows you to perform this
process at the most appropriate point in your program, And avoid
unnecessary and unwanted delays.

Note that in order to stop the user calling the menu while it's being
changed., you Are strongly ad viced to freeze the menus with MENU OFF at
the start of your procedure. The menu can then be safely restarted
using the MENU ON command after you've finished. Evolving menus Are
particularly useful for adventure games as each location can have its ::

own individul menu options which can be updated depending on the
player's actions.

Embedded menu commands . • ^ •

Any menu string can optionally include a powerful set of embedded
commands which allow you to customize the appearance of your menus to
an incredible degree;. The list of commands in enclosed between sets of
round brackets () and individual instructions Are separated using
colons ":". For example:

Pienu$(i) = " (Locate 10,10 s Ink 1,1) Hello"

Each instruction consists of just two characters which can be in either
upper or lower case. Anything else will be ingnored completely. Most
commands also require you to input one or more commands., These numbers
fcmust never* make use of expressions « -these ars >••,.-,+ &^:t..>« I.<»<J . T K =

commands are listed below.

Note: In the syntax the two important characters which make up the

command are in upper case and highlighted bold.

BOB (draw a bob)

8 0 b n • " • •

The BOB command draws a bob number n at the current cursor position. No "
accound is taken of the hot spot of the bob,, All coordinates are
measured relative to the top left corner,, Also note that colour zero is '.
usually treated as transparent. This may bs changed using the NOMASK
command from AMOS Basic, For examples

Load "AMOS_DATA:Sprites/Octopus.abk11 ,
Henu*(l)="(Bob 1) 1":Menu*(l,1)="(Bob 2) 2" . ;

Menu$(l?2)="(Bob 3) 3"
Menu On s Wait Key . ; •

ICON (draw an icon)

ICon n . , ' : ' • • '

Draws icon $ n at the current cursor position,. Note that unlike bobs,,
colour zero is NOT normally transparent. See the Basic HAKE ICON MASK
for more details* .••••.

•t LOCATE (move the graphics cursor) 223

LOcate x,, y , , •.

Tis command moves the graphics cursor to coordinates x,y measured '--
relative to the top left corner of the menu line,, Note that after an
instruction the graphics cursor will always be positioned at the bottom
right of the object which has just been drawn. These coordinates will
also be used to determine the location of any further items in your
menu like so;

Menu$(l)="Example "sMenu$(I,I)="Locate (Lo 50,50) in action " . .
Menu$(i,2)="Guess my coords" . '.
Menu On : Wait Key :••-.'

INK (set Ink and Paper colours)

INk n,, value

The INK command assigns the colour indexes to be used for the PEN,
PAPER and OUTLINE colours, Here's a list of the various possibilitiess

n Effect

. 1 Set text PEN colour . •
2 Set PAPER colour
3 Set OUTLINE colour

SFOMT (set font)

SFont n

SFont sets the current font to *graphics* font number n. This will be
used in all future menu items. NOte that you MUST call GET FONTS before
this instruction is executed, otherwise it can only use the two rom

SSTYLE (set font style)

SStyle n

This coutmand sets the style of the current font to n which is a
bit-pattern in the following format:

Bit Effect

0 Underline
1 Bold
2 Italic

LINE: (draw a line) 224

LIne x,y

The LINE command draws a line from the current cursor position to the
graphics coordinates x ,,y,. See EXAMPLE 16.,6

SLIME (set line pattern)

SLine p

Sets the line style used in all subsequent LINE comands to the bit
pa11ern held in p. Since there is no expession eva1uation, this pattern
•should always be converted into decimal notation before use,, A simple
demonstration of the possible line styles can be found in EXAMPLE 16.,7,,

BAR (draw a bar)

BAr x,y

This draws a rectangular bar from the current cursor coordinates to
x,y. See EXAMPLE Ib'-B,

OUTLINE! (enclose bar with an outline)

Outline flag

Draws a border in the current outline colour (ink 3) around all
subsequent bars,, A value of one activates the border and 0 removes it,,

The general structure of a menu procedure is;

Procedure ITEM .
If DREGC2) • ;
X=DRE6()sY==DREG(l)
... draw the item,.

Endif • . '

DREG(O)-8X • ' ; ' •-
DREG(1)-BY - . , •

End Proc

The dimensions of the menu item as displayed on the screen are set
using the coordinates BX and BY. These MUST he loaded into registers DO
and Dl before leaving your procedure as they are needed to create the .
final menu bar.

While inside your procedure you can perform most AMOS instructions
including other procedures. But some instructions Af& absolutely-
forbidden! If you use these commands,: you won't get an error message
but. your A MI (3 A may crash unexpectedly!

* NEVER change the current screen inside a menu,
* Don't set or reset a screen zone
* Avoid using instructions such as WAIT,, WAIT KEY, INPUT or INKEY*
* Disc operations Are absolutely forbidden!
t Any error trapping in your procedure will be ignored. :

Used with caution,, the PROC command ca.n procedure some mind-blowing -•
effects. For a demonstration,, load EXAMPLE 16., 10. ••; - /

RESERVE (reserve a local data :

i\re& for a procedure) .
R E s e r v e n . • • .

Reserves n bytes of memory for this menu item.. This area can be
accessed from within your menu procedure using the address held in
AREG(i). The data Ares, you have created is common to all the strings in
the current menu object. It can be used to exchange parameters between
the various procedures called by a menu item.

MENU CALLED (redraw a menu item continually) . •

MENU CALLED(,,) •

Automatically redraws the selected menu item 50 times a second whenever

it's displayed on the screen. It's usually used in conjunction with a
menu procedure to generate animated menu items which change in front cf 227
you.r eyes.

In order to make use of this function, you first need to define a
menu procedure, using the principles outlined above. Then add a call to
this procedure in the required title strings using an embedded
MENU CALL. When the user displays the chosen item, your procedure will
be repeatedly accessed by the menuing system.

Since your procedure will be called 50 times a second, it should
obviously return back to the menu as quickly as possible. This will

allow enough •time for the rest of the menu to be succesfuily updated.

Also note that your embedded procedure can safely animate your item
using either bobs or sprites. However, as the menu items are NOT double
buffered, your bobs m&y flicker slightly on the screen. So it may be
better to use computed sprites for this purpose instead,, Another
approach is to draw your display with the standard AMOS graphics
commands. An example of this can be seen in EXAMPLE 16.11.

MENU ONCEl (turns off automatic redrawing)

MEUN 0NCE(5,) • . ; ,

Turns off the automatic updating system started using the MENU CALLED,

Alternative menu styles ' \

Normally the titles of a menu Are displayed as a horizontal line and
the options are arranged below it in a vertical menu bar. If you. want
to create something a little unusual, you can change the format of each
level of your menu using the following three instructions:

MENU LINE (display a menu
as a horizontal line of items)

MENU LINE level
MENU L '

Displays the menu options at the requested level in the form of a
horizontal line. This menu line starts from the left-hand corner of the
first title ami stretches to the bottom right corner of the last,.

MENU LINE level ;•'• '

Defines the menu style of an entire level of your menu,. This sould only
be called d ur i n g you r <nen u d ef i n i t i on s „

MENU LINE (,,) . : - • V: • .

Normally one would only use the "level" version for this command.
Setting individual items to Line and Bar can give bizarre results, but
this may be useful for something i

MENU TL1NE (display a menu as a total line) • 228

MENU TLINE level
MENU TLINE(,,) _ ;V , , ,,

Displays a section of the menu as a "total line" stretching from the
v&ry left of the screen to the very right, The entire line will be . -
drawn even when the rist item is in the middle of the screen.

"level" is a number ranging from 1 to 8 which specifies the part of
the menu to be affected. This is the standard form of the instruction,
a n d c h o u l d b <•:> t-il l.»d d u .-• 1- r, <r, r <-,..., - ~ <» •.... <J »-T- i ,, :i. t i. « r> s « a a •:, i i K r w ;i. v> e :i. t w :i. 1 1

have no effect.

You can also change the appearance of a menu after it has. been vrated
using a second form of this command. For example:,

Menu Lined,1) s Rem Displays menu 1,, 1 as a line.

I1EMU BAR (display a section of the
menu as a bar) "

MENU BAR level , v. . .:•

MENU BAR(.,,) :

This displays the selected menu items in the form of a vertical bar.
The width of this bar is automatically set to the dimensions of the
largest item in your menu. -

"level" is a number which indicates which part of the current menu
definition is to be affected. As a default this option is used for
levels 2 to 8 in your menu. Note that this form of the MENU BAR
instruction may only be used during your programs initialisation phase,,

(,,) is a list of parameters which allow you to change the style of
your menus once they've been installed,, Here's an example of Menu Bar
and Menu Tlines •, , \

: FLAG=0
SETJ1AN . ;•••:•:

Do
If Choice and Choice(l)=2 And Choice(2)=l Then ALTER

Loop
Procedure SETJ1EN :

. , Menu$(l)=" Bar Demo " : Menu*(2)=" Select Below "
Menu*(:L,i)"-" I do nothing! "
Menu*(2,1)=" Yes, press on me! " : .
Menu On

End Proc ' - ' . '
F'rocedure ALTER

Shared ALTER " ,.,- .
Menu Del
If FLAG=Q Then Menu Bar 1 ;: Flag==l Else Menu Tline 1 s Flag=0
SET.J1EN

End Proc : '

MENU INACTIVE (turn off menu item) 229

MENU INACTIVE level : ' . •-•;;'
MENU INACTIVE?,,)

As its name suggests, MENU INACTIVE deactivates a series of options in
your menu. Any subsequent attempts to select these items will be
completely ignored, "level" allows you. to deactivate an entire section "
of the fnenu and you can also deactivate individual menu options with
the parameters (,,). These indicate the precise position of your item
in the current menu hierarchy.

Note that the menu items you've turned off with the instruction will
be immediately replaced by the INACTIVE* string you specified during
your original menu definition. If this was omitted, all/" unavailable

m e n u o p t i o n s w i 3.1 b e s h o w n i n i t a 1 i c s.,

MENU ACTIVE (activate a menu itsm)

MENU ACTIVE level . ,'
MENU ACTIVE*,,)

Simply reverses the effect of a previous I1ENLJ INACTIVE command. After
you've called this instruction, the selected options will automaticall;
redisplayed using their original title strings„

Moveable menus

Ail OS menus can be displayed at any point on the screen, Hen us can be
moved either ex piicity by your program or directly by the user.

: MENU MOVABLE (activate automatic menu movement)

MENU MOVABLE level , - . , . . ,:
MENU MOVABLE(,,) .-' .

Informs the menuing system that the menu items at "level" may be moved
directly by the user - this is the default.,

The second form of this command allows you to set the status of each
individual item in the menu,, The parameters between the brackets can
indicate any position in the menu hierarchy..

Any menu m&y be repositioned by moving the mouse pointer over the
FIRST item in the menu and pressing the left mouse button. A
rectangular box will now appear around the selected menu item, And this
may be moved to nay point on the current screen. When you release the
left button the menu will be redrawn at the new position along with all
the associated menu items.

Note that this command does not allow you to change the arrangement
of any items below this level., If you want to manipulate the individual
menu options you'll need to use a sea pa rate MENU ITEM command.. See .
EXAMPLE 16.12 for a demonstration of this system..

MENU STATIC (fix a menu into place) • 230

MENU STATIC level
MENU STATIC(,,)

Defines the menu at "level" to be immoveable by the user,, One problem
with moveable menu, is that the amount of the memory they consume will
change during the course of a program. If your menus &r<s particularly
larqe, or if memory is running tight, this can cause real problems as a
single careless action by the user will abort your program with an
"out of memory" error. With the help of the MENU STATIC command you can
avoid this difficulty completely.

MENU ITEM MOUABLE (»=^«
individual menu options)

MENU ITEM MOVABLE level
MENU I TEH MOVABLE (,,,}

This command is similar to MENU MOVABLE except that it allows you to :

re-arraqne the various options in a particular level,, So all the items
in a menu bar may been individually reposi tinned by the user,,

Normally it's illefal to move the items outside the current menu bar,
but this can be overridden using the MENU SEPARATE command.

In order for the menu items to be moveable, the WHOLE! menu bar must
also be moveable. So if you fix the MENU into pa Ice with MENU STATIC,,
this co fii m a n d w i 11 h a v e n o e f fee t „ A d d i t i o n a 11 y y o u c a n ' t m o v e t h e first
item in the menu bar as this will move the entire line. Another side
effect is that moving the last menu item will permanently reduce the
size of your menu bar., There B.re two possible solutions;

t Enclose your entire bar with a rectangular box like sos

Menu$(i,i} = ,.,"(Bar 40,,100)(Loc 0,0)"

Where MENU$(l,i) is the first item in your current bar.

* Set the last item into place with MENU ITEM STATIC, . .

MENU ITEM STATIC (static menu item)

MENU ITEM STATIC level
MENU ITEM STATIC(,,) V :

This command locks one or more menu items firmly into place and is the
default setting.

MENU SEPARATE (separate a list of menu items) . 231

MENU SEPARATE level .. , ..
MENU SEPARATEC,,) . . ' •••",:•

Tells AMOS to separate all the items in the current level. Each item in
your menu istreated completely independently from the previous one. If
you haven't defined a background string, each item will be offset by
two pixels from the one above. This creates an attractive stepped
effect which can be removed by editing the menu with the MENU
Accessory,

The optional parameters to this instruction allow you to split a menu
bar at any point in the line. Once you've? separated an item it will be
affected by the MENU MOVABLE commands rather than ITEM instructions.

MENU LINKED (link up a set of menus) :

MENU LINKED level : •••..:
MENU LINKED(,,) • , ' ;

T h i s l i n k s o n e OP- niof-o menu i t e m s t o g e t h e r . I t ' s t h e o p p o s i t e o T the?

MENU SEPARATE instruction.

=f!ENU X (return the graphical X coordinate
of an menu item)

The MENU X function allows you to retrieve the position of a menu item
relative to the previous option on the screen. You can use this
informat ion to implement powerful me ruts such as the one found in
EXAMPLE 16.13.

=MENU Y (return the graphical Y coordinate
of a menu item)

x=MENU Y

Returns the Y coordinate of a menu option, note that all coordinates
Are measured relative to the previous item., So this is NOT a standard
screen coordinate!

Moving a menu within a program

MENU BASE (move the starting point of a menu)

HEWU BASE x,y .

This command moves the starting point of the first level of your menus
to the absolute csreen coordinates x,y. All subordatine menu items will
be displayed at their curent positions relative to the top of your
flieniu See EXAMPLE 16,14 for a demonstration of the MENU BASE command in
action.

SET MENU (move a menu) ; .

SET MENU (.,) TO x,y ' •,, ' .,-'

Sets the coords of the top left corner of a menu item. These
coordinates a. re measured relative to the previous level. The starting
point for the entire menu (coords 0,0) may be set with the MENU BASE
command.

All the ivels of the menu below your die mi wlil also be moved by this
instruction. Their relative positons will be unchanged. Since x,,y can
be negative numbers, it's possible to arrange the items in a menu bar
in the form of a control panel - see EXAMPLE 16,, 15.

Displaying a menu at the cursor position

MENU MOUSE (display the menu under the mouse)

MENU HOUSE ON/OFF

The MENU MOUSE features automatically display all (iienus starting from
the current position of the mouse cursor,, The mouse coordinates are
added to the MENU BASE to get the final position, so it's possible to
place the menu a fixed distance away from the mouse pointer if
required. See EXAMPLE 5.6,, 16,,

17s SOUND AND MUSIC 233

The Amiga's sound system is capable of generating stereo sound effects
which would have been unheard of just a few years ago. The results ;?,re
impressive even through your TV speaker,, but when you connect your
Amiga to a Hi-Fi, the sounds can actually shake your roomi

As you would expect from AMOS,, we've come a long way since the hum be
BEEP command. In fact, we've provided everything you need to
incorporate mind-blowing sound effects in your own games. All the AMOS
sound commands are performed independently of your Basic programs. So
your soundtracks can be played continuously,, without affecting the
quality of the game-play in the slightest,,

• Samples may be created using any of the available sampling cartridges
and can be replayed with a simple SAMPLAY instruction,, Each sample can
be output in a variety of speeds, and may be looped repeatedly. It's
even possible to play a sample as a musical note,

Music can be converted over from a separate package such as SOMIX,
SOUNDTRACKER or GilC. The AMOS Music system is intelligent and will
automatically stop when a sound is played through the current channel,
thus allowing you to effortlessly combine both samples and music in the
same sound channel, without the risk of unwanted interference effects.

Each song can incorporate up to 256 separate instruments; the only
limit to the number of songs is the amount of available memory. In
order to keep the memory overhead down to an absolute minimum, all
tunes are built up of a number of separate patterns. Once a pattern has
been created, it can be accessed anywhere in your music using just a
couple of bytes,, By defining just a few key patterns,, you can therefore
create dozens of different tues without running short of memory.

The best thing about the AMOS music system however, is that it's
expandable. The entire source code is supplied on the data disc for you
to examine or change„ So you won't be left out in the co1d by any
future developments on the Amiga's music scene.

Simple sound effects

We'll start off with a run down of the built-in sound effects included
in AMOS Basic. These are the AMOS equivalent to the Amiga Basic BEEP.
command. . . . :.

BOOM (generate a noise sounding like an explosion)

BOOH

Kapow! You're dead! Use BOOM to add the appropriate stereo sound effect
in your games. Traditionally this type of "White Noise" as been
extremely difficult on the Amiga, but AMOS uses a clever interrupt
system to create A realistic explosion effect. Examples;

Boom : Print "You're DEAD:"

SHOOT (create a noise 1 i ke a gurs f i ring)

SHOOT

This command generates a simple gunshot effect. Like BOOM,, SHOOT does

not halt your program in any way,, So if you're firing several

successive shots, you may wish to add a small delay using WAIT.

...• Shoot : Wait 6 5 Shoot : Print "You're DEAD!"

BELL (simple bell sound) . " . 234
f

BELL [f] .''•"•.

BELL produces a pure tone with frequency f. f sets the pitch of the :

note, from 1 (very deep) to 96 (yery high).

Sound channels .

The Amiga's hardware can effortlessly play up to four different sounds
simultaneously. This allows you to add attractive harmonics to your
sound effects.

Each sound can be output through one of four VOICES numbered from
0 to 3, You can think of these voices as a separate instruments which
can independently play their own sequence of notes, samples or music.
All four voices Are internally combined to generate the final sound you
hear through your speaker system.

The AMOS sound instructions will happily play your sounds using any
arrangement of voices you. like. All AMOS sound commands use a standard
way of entering your voice settings. Each voice is assigned a
particular bit in a VOICE parameter like so:

Bit 0 -> voice 0 . ; * ":
Bit 1 -> Voice 1 : •
Bit 2 -•> Voice 2 ; T . '.. • \

Bit 3 -••> Voice 3 ;

To activate the required voices, set the appropriate bits to i. Here's
a list of common values to make things a little easier

Value Voice used Effect ' \

15
9

8
6
4
2
1

0 ,1
0 , 3

• j

2 , 4
2
1
0

Uses all four voices
These voices Are combined together and
output to the left speaker.

Played through the RIGHT speaker.

In order to do justice to the resulting sound effects, you'll almost
certainly need to connect your Amiga to a Hi-Fi system of some sort,
Host TVs Are just not capable of reproducing the full range of sounds
which can be generated by the Amiga's amazing hardware.

VOLUME (change the sound colume) 235

VOLUME Cv,j intensity

VOLUME changes the volume of the sounds which are to be played through
one or more sound channels.

"intensity" refers to the loudness of this sound,, It can normally
range from 0 (silent) to 63 (maximum). As a default, the volume is set
to the same intensity for all four of the available voices. THe new
volume will be used for all future sound effects,, including music.

The v parameter lets you change the volume of each voice
independently, v now indicates which combination of voices are to be
regulated,, This second option is only used by the sound effects. It has
no affect on any music you're playing. The voices are selected using a
bit amp in the standard format,, with each bit representing state of a
single sound channel. If the bit is set to 1, then the volume of this
voice will be changed, otherwise it will be unaffected,, Examples:

Volume
Volume
Play 40
Volume

S0001
mio
,0 :
50 :

,6
,,1
uia
PI

A

it

s Boom 2
: Boom ::
30
40,0

Wai
Wai

t
t
100
50

Sampled sound

If you had to generate all the sound effects you need., directly inside
your computer, you would be faced with An impossible task. In practive,
it's often much easier to take a real sound from an external source,
such as a tape recorder, and convert it into a list of numbers which
can be held in your computer's memory.

Eacn number represents the volume of a particular sample of the
sound. By rapidly playing these values back through the Amiga's sound
chips, you can recreate a realistic impression of the original sound.
This technique forms the basis of the sampled sound effects found in
most modern computer games,,

If you want to create your own samples, you'll be forced to buy a
separate piece of hardware known as a SAMPLER CARTRIDGE. Although these
cartridges are fun, they're certainly not essentia. AMOS Basic is
perfectly capable of playing any existing sound sample,, without the
need for any expensive add-ons.

Currently there &re hunderds of sound effects available from the
public domain (PI)),, covering the vast majority of the effects you'll
need in your games. We've even included a selection of useful samples
on the AMOS data disc for you to experiment with.

SAM PLAY (play a sound sample from
the AMOS sample bank)

SAM PLAY s ' „ •
SAM PLAY v,s
SAM PLAY v5s,f The SAMP PLAY instruction plays a sampled sound

straight through your loudspeaker system. All
samples are normally stored in memory bank number 5, but this may be 236
•f r i.-3 ,~i I y ch*ingsd u^inq the ^AM

s is the number of the sample bank which is to be played,, There's no

limit of the samples you can store in a bank other than the available
memory. If you want to use your own samples with this instruction;,
you'll need to incorporate them into an AMOS memory bank,. Full details
can be found towards the end of this section.

v is a bit-map containing a list of voices your sample will use. As
usual, there's one bit for each possible voice. To play your samples
through the required voice, simply set the relevant bit to 1.

f holds the playback speed of your sample,, measured in hertz,, This
specifies the number of samples which Are to be played each second,,
Typical sample speeds range from 4000, for noises such as explosions;,
to 10000 for recoqnisable speech effects,, By changing the playback
rate, you can freely adjust the pitch of your sound over a large range,,
So a single sample can be used to generate dozens of different sounds.
Examples

Load "AMOS_DATA;Samples/Sample_,Demo,,abk" .• . - '
For S=l To 11 " "•'/•!
Locate 0,0 i ? "Playing sample ";S
Sam Play S . ,
Locate 0,24 sCent re "<Hit a key to continue)" sWait Key :Cline

Next S ' •
Wait Key , .
Sam Play 1,11 ; Wait 5 s Sam Play 2,11
Wait key
Sam Play 1,1,2000 ' , • -
Wait Key ,
Sam Play 1,1,15000

A further demonstration of this command can be found in EXAMPLE 17.1

SAM BANK (change the current bank) , 4 .

SAM BANK n . . . -

Assigns a new memory bank to be used for your samples,, All future
SAM PLAY instructions will now take their sounds directly from this
bank.

It's possible to exploit this feature to hold several complete sets
of samples alongide each other. You can then between these samples at
any time, with just a simple call to the SAM BANK.

SAM RAW (play a sample from memory)

SAM RAW voice,address,length,frequency

Plays a raw sample stored anywhere in the Amiga's memory, "voice" is a
bit-pattern in standard format which specifies the list of voices your
sample is to use. Each bit in the pattern selects a single channel to
be played (see sound channels).

"address" holds the address of your sample. Normally, this will refer
to the inside of an existing AMOS memory bank, "length" contains the
length of the sample you wish to play,, "frequency" indicates the sample
speed to be used far tho playback fin samples per second or Hz). This
m&y be very different to the rate at which the sample was originally
recorded.

SAM RAW lets you play standard Amiga samples straight through your
loudspeaker, without the need to create a special memory bank (see
Creating a sample bank)., It's now your responsibility to manage your
samples in memory,, and enter the sample parameters by hand,, SAM RAW is
great for browsing through files from your disc collection. Use B 1.0AD
to hold a file in a bank and then use SAP! RAW to play the data,, With
luck you should come across some interesting sounds. Examples:

Reserve As Work 10,55000
' ' Bload "Samples/Samples.abk",start(iG)

• Sam Raw 15,start(10,length(10},10000 [•'•''

SAN LOOP (repeat a sample) •

SAMP LOOP ON/OFF

The SAM LOOP directive informs AilOS Basic that all subsequent samples
are to be repeated continuously. Examples: ' .•'.-::

Load p'AMOSJ}ATAsSamples/Saiiipledemo.,abk"
Sam Loop On .., . !

For S=i To II
Locate 0,0 : Print "Playing sample ";;S
Sam Play S
Locate 0,24 s Centre "<Hit a key to continued-" sWait Key sCline

Next S
Sam Loop Off

This looping effect can be deactivated with a simple call to the
SAM LOOP OFF command.

Creating a sample bank •

If you're indenting to play your own samples using SAM PLAY, you'll :

first need to load them into a memory bank. This can be achieved with
the SAMMAKER program supplied on the AMOS data disc. •

,, On start-up, SAMMAKER presents you with a standard AMOS file
selector. Enter the filename of the first sample to be stored in your .. *
new bank, and press RETURN. If AMOS can't find the sampling rate,,
you'll be asked to enter it directly. It doesn't really matter if you
make a mistake at this point, as you can safely replay your samples at
any speed you like. • • <•• ,

After a short delay, you'll be prompted for the next sample to be
installed into the bank. When you've reached the end of your samples;,
type SAVE at the file selector to save your samples onto the disc.
You'll be automatically prompted for the destination filename of your
new bank. This can now be entered into AMOS Basic using the LOAD
command like so:

Load "Sample.abk"
Load "Sample.abk" ,,6 % Rem Loads safliple i n t o bank U6,, 238

Music . .

The AMOS music system allows you to easily add an attractive backing
track to your games. Music can be created from a variety of sources,,

including 6MC, SOUNTRACKER or SONIX.

In order to convert these musics into the special AI1OS format,, you'll
need to use one of the translation programs included on the AMOS data
disc. GMC music should have been saved using the SAME DATA icon,, as
this copies both the music and the instrument definitions into a single
large data file.

MUSIC (play a piece of music) ' .

MUSIC n • . . , . . •

The AMOS MUSIC command starts a piece of music from the music bank
(S3). This music will be played independently of your Basic program,
without affecting it in the slightest.

No r m a 11 y, i t' s p o s s i b 1 e t o s t ore s e v a r a 1 c o m p 1 e t e arrange fit e n t s i n t h e
same bank. Each composition is assigned its own individual music
number. The only exception to this rule is music created by GMC, which
only allows you to place one song in the bank at a time., Example;

Load "flUSIC/Husicdemo.abk"
Music i : ' '•. . .

The AMOS music, system is intelligent,, and will automatically suspend :
your music for the duration of any subsequent sound effects on the
current channel. When the sound has finished, your tune will be
restarted from its'previous position. Up to three separate tunes can be
started at a time. Each new music command stops the current song,, and
pushes its status onto a stack. Once the song has concluded, the old
music will commence from where it left off.

MUSIC STOP (stop a single section of music)

MUSIC STOP • ' ' . - •

Halts the current piece of music. If another music is active, it will
be restarted immediately,,

MUSIC OFF (turn off all music) :

MUSIC OFF . ' '•

THe MUSIC OFF command deactivates your music completely. In order to
restart it, you'll need to execute your original series of MUSIC
instructions again from scratch. -

TEMPO (change the speed of a sample of music) 239

TEMPO s •

TEMP modifies the speed of any tune which is currently being played
with the MUSIC command, s is the new speed, and c«n range from .1 (Vf3ry
slow) to 100 (ver.y fast). Not all instruments are capable of playing at
this maximum speed, however,, The practical limit is closer to 50. For a

demonstration, place the AMOS data disc into the current drive and

type;

Load "AiTIOS_J)ATAsF!usic/!ius:icdemo,.abk"
Music 1
Tempo 35
Tempo 5

Mote that music created with GMC often contains labels which set the
tempo directly inside the arrangement. These labels will override the
tempo settings within AMOS Basic. So it's not advisable to use them in
your own music, •

i'iv'OLUHE (set the volume of a piece of music)

MVOLUME n .

Changes the volume of the entire piece of music to intensity n (0-63),

VOICE (activate one or more voices j

of a piece of music)
VOICE mask /

Activates one or more voices of the music independently. Usually each
voice will contain its own separate melody which will combined through
your speakers to generate the eventual music,

"mask" is a bit mask in the normal AMOS format which specifies which
voices you wish to play,, Each bit represents the state of one voice in
the music. If it's set to 1,, the voice will be played, otherwise it
will be totally unused.

Load "AM0S_..DATA:!1usic/i1usicdemo,abk" .
M u s i c 3. . ' • . . .
For V=0 To 15 ".
Locate 0,0 : Print "Voice ";V '.
Voice V
Wait 100 ••. . ./. ..-
N e x t V , ;-•
Direct
Voice ":0001 : Rem Activate voice 0 ..
Voice X0010 : Rem • ,, 1 , .
Voice £1001 : Rem * 3 and 0 . '*
Voice SI Hi s Rem 4 ;

=: V U l"l E T E R (v o 1 u m e m e t e r)

s=VUMETER(v)

The VUMETER function tests voice v and returns the volume of the

current note which is being played by your music, s is an intensity
value between 0 and 63. v is the number of a single voice to be checked
(0-3).

LJ ^ i n 0 +. h i *S. - f u n *:: +. i. *:* n ., y o n <r. «n rt m £* U.e? y <;» %,.\ r~ ss- p \r a. t, fc7 » tl C\ I'l t. e? t. U &, p :l £? C. £? O T

music! Load EXAMPLE I7»2 for a demonstration™

Mote there's also an A11AL version of this intruction which allows you
to create realtime VU meters using interrupts,. See the section on the
V'U comniand for more inforntation,,

Playing a note

PLAY (play a note)

PLAY [voice,] pitch,delay

Plays a single note through the loudspeaker of your TV or Hi-Fi.
"pitch" sets t h e t o n e a f t his s o u n d, ra n g i n a f r o m 0 (low) t o 9 6 { h i g h)
Rather than just being an arbitrary number, each pitch is associated
with one of the notes (A,,B,C,D,E,F,G)., This can be seen from the
following table. .

Octave

Note

C

D
m
E
F
FH

6
OM
A
AM

0

1
£..

:j

4
5
6
7
8
9
10
11

1

13
14
.1.5
16
17
18
19
20
21
£~ A..

23

2

26
27
28
29
30
31
..v ̂

JJ

34
35

3
P

37
38
39
40
4.1.
42
43
44
45
46
47

4
itch

49
50
51
52
53
54
55
56
57
58
59

5

61
62
63
64
65
66
67
68
69
70
71

6

/ •..)
74
75
76
77
78
79
80
8.1.
82
83

7

85
86
87
88
89
90
91
92
93
94
95

B 12 24 36 48 60 72 84 96

It should be apparent that the notes go up in a cycle of 12,, This cycle 241
is known as an octave..

The optional voice parameter allows you to play your notes through
any combination of the Amiga's four voices. As usutal it's a bit-map in
the formats -..•-. • , :

Setting a bit to a value of 1 plays the
relevant voice, "delay" sets the length
of the pause between the play command and
the next Basic instruction. This allows
you to play each note before preceding
the next one.

A delay of zero starts a note and immediately jumps to the next Basic:
instruction,, By playing several notes after another,, you can easily
generate some attractive harmonic effects. Examples:

Play 1,40,0 : Play 2.50.0 . ' "
Wait Key . - :

Play 1,40,15 : Play 2,50,15
Do . . > : •

T=Rnd(96) : V=Rnd(15) : Play V,T.,3 :/
Loop i . ••• .

Bit

0
1
2
3

voice

0
i
2

•: 3

PLAY is not limited to purs notes incidentally.. It's also possible to
assign complex waveforms to the sound generator using the powerful WAVE
and NOISE commands.

Waveforms and envelopes

SET WAVE (define a waveform)

SET WAVE wave,shape* : ;,

The SET WAVE instruction provides you with the ability to define your
very own instruments for use with the AMOS Basic PLAY instruction. The
sound of yur instrument depends on the shape of a waveform held in the
Amiga's memory. This forms a template which is repeated to produce your
final note.

"wave" is the number of the waveform you wish to define. Allowable
wave numbers start from 2 onwards. That's because waves zero and 1 are
already installed. Wave zero holds a random noise pattern for producing
explosion effects. Wave one is a smooth sine wave and generates the
pure tones used by the standard PLAY instruction.,

The shapes of your waveform &re set using a list of 256 numbers which
are entered using the SHAPE$ parameter. Now look at the uppest diagram
in the AM0S4.PIC (file included with this manual packet).

< picture AM0S4.PIC, the uppest diagram > 242

Each number represents the intensity of an individual section of the
waveform. This is equivalent to the height of just one point in the
diagram. Possible values for intensity range from -128 to 127. Since
AMOS strings are only capable of holding ^positive* numbers (0-255),, .; .-• . .
you'll need to convert your negative values into a special internal
format before use. The required value can be calculated by simply
adding 256 to the negative numbers in your list,,

Here's a program which demonstrates how the triangular wave in the
previous diagram could be created in AMOS Basic '•"

For I=-128 To 127 • • -
X=I : If X<0 Then Add X.,256 • ' \
S*=S$+Chr$(X) " •-,

Next I • - '
Set Wave 2,S*

Before playing your waveform you have to tell AMOS Basic which channels
are to be assigned to your wave. This can be achieved using the WAVE
command. Add the following line to the previous routine

Wave 2 To IS s For 3=10 To 60 s Play S.,10 :: Next S -.

The Best way to reproduce the effect of a real instrument is to combine
several SINE waves together. An example of one of these sine waves can
be seen in the picture AM0S4.PIC:

< picture AII OS 4. PIC, the diagram in the middle > ,

Adding several of these waves together, with different sizes and

separate starting points, produces waves in the •following pattern:

< picture AH0S4.,PIC., the lowest diagram >

This generates the smooth harmonics needed for your notes,, Here's an

example:

SHAPE$^!'" 5 Degree
For S=0 To 255 *
V=Int((Sin(S)/2+SIN(S*2+45)/4)*128)+127
SHAPE$-SHAPE$+Chr$(V)

Next S - .
Set Wave 2,SHAPE* : Wave 2 to 15 .' . '
For W--10 to 60 s Play hi, 10 : Next N

WAVE (assign a wave to one or more sound channels)

WAVE w To v ' •-,..•

WAVE assigns wave number w to one or more sound channels, v contains a
bit™map in the standard format. If a bit in the pattern is set to 1
then the approrpriate voices are used by PLAY., otherwise they will be 244
completely unaffected.

As a default, wave zero is reserved for the NOISE channel, and wave
one contains a sine wave. Here &re some examples: •'.'.•

Wave 0 To £0001 •" . ',. ,
Play 1,40,0 ' • ; ' ' . \ •' . '
Wave 0 To £1100 , . " '] . . ' ' •
Play 20,10 ; / . . • * :

Wave 1 To £1111 ,-
Play 60,0 ;: • ; '•':',•

NOISE (assign a noise wave to a channel)

NOISE TO voices s '

Applies a white noise effect (wave 0) to the selected voices,, Load
EXAMPLE .17,3 for a demonstration.

"voices" is a standard bit pat"
four possible voices, starting from zero,. NOISE is equivalent to the
command;

W a v e 0 T o v o i c e s ,< -.'."'••••'. . •• ' • ; .

Exampless ;

Noise To 15

Play 60,0 •
Play 30,0 ' • •;" • ' .

DEL. WAVE (delete a wave)

D E L U S A U E n • • • • . ' •

Deletes a wave which has previously been defined using SET WAVE,, n is

the number of the wave, and starts at 2. It's impossible to delete the
* built-in NOISE ans SINE waves using this instruction,, After the wave

has been erased, all voices will be reset to the standard SINE wave
(default).

SAMPLE (assign a sample to a wave)

SAMPLE n TO voices • .

This is the most powerful cersion of all the wave commands. It assigns
a sample stored in the sample bank to the current wave. Play will now,
take an instrument straight from the sample bank, ..'

Lo a d " S a m p l e s / s a m p l e ! ,,abk" •• „••• _ •"•."-. , 2 4 5
Sample 1 To 15 . .
For 1=20 To SO , . .

P l a y I . , 5 0 -'• • ' ' • . - • • ' • ' • • •

Next 1 • ,. ' -:•.

As usual "voices" allows you to select a range of voices to be set by
the instruction. It's a standard bit-map;; Bit 0 ••••> Voice 0 etc...

Motels The range of notes that a sample can be played with, depends
on its original recording rate,, If a no to is too high, AH OS may not be
able to play it at all. The acceptable range varies from a sample to
sample,, but it's usually between 10 and 50,,

SET ENVEL (create a volume envelope) ' •••''••

S E T E N V E L w a v e , p h a s e T O d u r a t i o n . v o l u m e •'••,:••

The SET ENVEL command smoothly changes the volume of a note while it's
being played. In the real world, sounds don't just sprint into
existence fully formed. They tend to evolve over a period of time,
according to a pattern known as the volume envelope. The shape of this
envelope varies depending on the type of instrument you are playing. A
typical example of one of these envelopes is shown in the picture
AM0S5.PIC.

< picture AMOS5.PIC >

The sound is split, up into four phases? Attack decay., sustain and * ,
release. AJ1QS E<asic allows you to define your envelopes using up to 246
seven separate steps. Each step represents a steady change in the
volume of the current note,,

"wave" is a number of the waveform which will be affected by this '
instruction. It's possible to use any waveform you like for this
purpose, including the built-in NOISE and SINE generators.

"phase" holds the number of the particular phase which is to be
defined, ranging from 0 to 6,,

"duration" specifies the length of the current step in units of a
50th of a second™ This determines the apparent speed of the volume
change to be generated in this phase,, : >

"volume" specifies the volume which is to be reached by the end of
this phase. Allowable volume levels range from 0-63,,

It's important to understand that this volume is relative to the
intensity you've previously st with the VOLUME command. So even if the
note is quiet,, the shape of the envelope will be perfectly reserved.
Now for some examples! -

Set Envel 1,0 To 200,63 : Rem Sets the 1st step.
Play 40,0 :

As you can hear, the volume of your sound starts from zero, and
increases to a maximum intensity during the length of the note. Now
let's try defining some thing a little more complicated,,

Set Envel 1,0 To 15,60
Play 40,0 s Wait Key
Set Envel 1,1 To 1,50 , , :
Play 40,0 s Wait Key •
S e t E n v e l 1 , 2 T o 1 0 , 5 0 ' • " • • • . . -
Play 40,0 : Wait Key ,
Set Envel 1,3 To 50,0 / :
Play 40,0

Finally, here's an example of a NOISE envelope: .

Noise To 15 . •'.•-'•'
Set envel 0,0 To 1000,30 ,
Play 40 ; i0 . I \. '. . • •
Wait Key-
Music Off •..-,.-

Don't confuse waves and envelopes. A wave sets the frequency components
of your notes, whereas an envelope simply changes their volume
according to a set pattern. • ' ' .

Speech

Your Amiga is supplied with a powerful speech synthesizer program which
CAP, be found on the standard Workbench disc, With the help of this
routine, your AMOS programs can be made to speak. Speech is especially
userful in education, as many yound people will respond far better to
the spoken word than to boring text. • • -

One word of caution though. Since the narrator package is independent
of AMOS Basic, we can't attest to its absolute reliability. You're
unlikely to encounter any serious problems, but it's well worth
treating it with a littlle care.

S A Y (s p e a k a p h r a s e) .••:..:• , 2 4 7

SAY t*C,,mode;i

The SAY command is incredibly easy to use. Enter your text in normal
English, concluding your phrase with a punctuation mark such as full
stop. SAY will now translate your words into an internal format and ,.=
speak them directly through your loudspeaker,, Example:

Say "AMOS Basic can really speak"

The first time you use this instruction,, the narrator ..device will
automatically be loaded from disc:,. So it's vital to ensure that an

appropriate disc is placed in the current drive before using this
system,, as otherwise you may get an Intuition style requester box,

"mode" toqgeles between two separate speech modes. As a default, your
program will wait for the duration of the speech,, and any music or
sound effects will be temporarily suspended. Setting "mode" to a value
o f o n e a c. t i v a t e s m u 11 i t a s k i n g s y s t e m w h i c h allow s you t o o u t p u t y a u r
speech whilst AMOS is executing your program. Inevitably,, this will
slow down your basic routines Considerably, To return your speech back
to normal, set mode to zero,,

If the narrator system cannot understand what you s.rB attempting to
speak you won't get an error message]., but the command will be
automatically aborted. Also note that the narrator can occasionally get
slightly confused with very short sentences. Sometimes the remainder of
the previous phrase is tagged to the end of the current voice. The
problem can be solved by simply adding a list of spaces to the end of
your text. These will wipe out the unwanted speech data. " • •

SET TALK (set speech effects) \

SET TALK sex ,,mode;, pi tch,, rate

This allows you to change the type of voice which will be used by the
SAY command, "sex" chooses between a male (0) or female (.1). In all
honesty, it's not a particularly realistic rendition. Better effects
can be created by simply increasing the frequency of the voice using
the pitch parameter.

"mode" adds a strange rhythmic pattern to the voice. This can be
activated by setting "mode" to a value of 1. .

"pitch" changes the frequency of the voice,, from 65 to 320. "

"rate" specifies the speed,, measured in the words per minute (40-400),, 248

Any of the above parameters can be omitted if required. Providing you
keep the commas in their normal positions,, you can change Any set of
options independently.

Filter effects

LED (activate a high pass filter/
change power led)

LED ON/OFF

The LED command has two completely separate actions,, Not only does it
toggle the POWER led on your Amiga's console (in KickStart versions
1.3 just makes the led a little darker)., but it also controls a special
high pass filter.

The filter changes the way high frequency sounds &r& treated by the
system. Normally,, these sounds are filtered out so as to avoid the risk
of unwanted d is tor ion effects. Untnl'tun*ieiy, -this robs many percussion
instruments of their timbre,, By turning off the filter, you can
recapture the essential quality of many instruments.

18: THE KEYBOARD . . • 249

AMDS Basic provides you with dozens of useful keyboard commands,, These
can be used in anything from an Arcade game to an Adventure™ It's, even
possible to write a fully fledged wordp.rocessor entirely in AMOS Basic!

=1NKEY$ (function to get a keypress)

k*=INKEY$

This function checks whether the user has pressed a key., and returns
its value in the string !<$•

Mote the IMKEY$ command doesn't wait your input in any way,, If the .
user hasn't entered a character, INKEY* will simply return an empty
string ""„

1MKEY$ is only capable of reading keys which return a specific Ascii
character from the keyboard. Ascii is a standard code used to represent
ail the characters which can be printed on the screen,,

It's important to realise that some keys,, like HELP button or the
•function keys,, use a rather different format,, If INKEY$ detects such a
ke y, i t w i 11 ret u. r n a c: h a r a c t e r w i t h a v a 1 u e o f i e r o (C H R $(()))„ Y o u c a n
now find the internal scan code of this key using a separate SCAM CODE
function.

=SCANC0DE (input the scancode of the last
* key input with IMKEY*) x

• i"

s = S C A N C O D E . .-.• •- -.-,..," \

SCANCODE returns the internal scancode of a key which has previously s

en tered usinq the INKEY$ f unction » This a 11 ows yau to c.heck f oi" keys [
which do not produce a character from the keyboard, such as HELP or '
TAB. Type the following small examples :

" • • • • • • • • • • ' • . • . ' i

Do • . , . . !

While. K$~"" .. , [
[

Wend
If Asc(K*)--0 Then Print "You pressed a key with no ASCII Code"
Print "The Scancode Is";Scancode

Loop

KEY STATE (test whether an individual 250
key has been pressed)

t^KEY STATE(s)

I
\ Check if a specific button has been pressed on the Amiga's keyboard, s
) is the internal scancode of the key you want to check. If this key is
J currently being depressed then KEY state will return a value of true

(-1), otherwise the result will be false (0).

=KEY SHIFT (return the status of
the shift keys)

keys=KEY SHIFT

0 Left SHIFT . : ,
1 R i g h t S H I F T : • •• •

2 Caps Lock Either ON or OFF
3 CTRL
4 Left ALT ;
5 Right ALT *
6 Left AMIGA C-- key on some keyboards
? Right AMIGA

If a bit is set to a one,, then the associated button has been held down
by the user.

IKIPUT$ (n) (function to input n
characters into a string) .

INPUTS enters n characters straight from the keyboard, waiting for each
one in turn. As with INKEYt, these characters a.re not schoed onto the
screen.

x$ is a string variable which will be loaded with your new
characters, n holds the number of characters to be entered. Examples

Clear Key s Print "Type In Then Characters"
C$=INPUT*(10) s Print "You entered ";C*

This insturction Knot* the same as the standard INPUT command,, The two
instuctions are completely different,, Also note that there's a special
version of INPUT* which can be used to read your characters from the
diSC, ...;;'• "•

WAIT KEY(wait for a keypress) • • , 251

WAIT KEY

Waits for a single keypress.

K E Y S P E E D (c h a n g e ke y rep e a t s p e e d) ;-.."•

KEY SPEED lag,speed ' . *

KEY SPEED lets you tailor the speed of the keyboard to your own

KEY SHIFT returns the current status of the various control keys,, These f
keys such as SHIFT or Alt cannot be detected using the standard INKYf- . [
or SCANCODE system. But you can easily test for any combination of . j
control keys with just a single call to the KEY SHIFT function,, "keys" ?
is a hit map in the following format; . ',

V ' •• • . f
Bit Key Tested Notes

:•

particular taste. The new speed will be used for every part of the AMOS]

system, including the editor, {

"lag" is the time in 50th of a second between pressing a key, and the |
start of the repeat sequence. [

"sDeed" is the delay of second between each successive character. . '

CLEAR KEY (initialise keyboard buffer)

CLEAR KEY • . '.'"'.•.,

Whomever you enter a character from the keyboard;, its Ascii code is
placed in an area of memory known as the keyboard buffer- It is this
buffer that is sampled by the INKEY* function to get your key presses.

CLEAR key erases this buffer completely, and returns your keyboard to
this original state. It's especially helpful at the start of a program,
as the buffer may well be full of unwanted information. You can also
call it immediately before a WAIT KEY comand to ensure that the program
wa it s f o r a f re s h key p r es s b e f ore preceding.

PUT KEY (Put a string into the keyboard buffer) 252

P U T K E Y a $ • •' " . : -. '•/ - : -

Loads a string a characters directly into the keyboard buffer,, Carriage
returns can be included using a CHR$(13) character.

The most common use of PUT KEY is to set up defaults for your input
routines,, Here's a demonstration:

•

D o .-••• ':: •:: •• v

Put Key "Wo"
Input "Another Game'1:; A $
If A$=:"No" Then Exit' , '

Loop . '

In put/Output

INPUT (load a value from the user and
put it a variable)

INPUT

Provides you with a standard way of entering information into one or
more variables. There are two possible formats for this instrucion:

INPUT

Enters a list of variables directly from the keyboard., "var" can
contain any set of variables you like,, separated by commas,. A question
mark will be automatically displayed at the current cursor position.

INPUT "Prompt";variable list[;3 :

Prints out the "prompt" string before en taring your information. Note |
that you must always place a semi-colon between your text and the . |
variable list. You are *not* allowed to use a comma for this purpose,. I

• • • . '.• l

The optional semi-colon ";i; at the end of your variable list •
specifies that the text cursor will not be affected by the INF'LIT <
instruction, and will retain its original position after the data has
been entered» '

When you execute one of these commands,, Basic will wait for you enter .
the required information from the keyboard,, Each variable in your list
must be matched by a single value from the user,, These values must be ;
of the same as your original values, and should be separated by commas„

| LINE INPUT (input a list of • 253
j variables separated by a Return)
I *
: LINE INPUT "Prompt" ̂ variable].ist[;] :

Line input is exactly same as INPUT, except that it uses a Return
instead of a comma to separate each value you enter from the keyboard.,

\ 19s OTHER COMMANDS

j PRINT / ?
(print a list of variables to the screen)

PRINT items * .

The PRINT instruction displays some information on the screen,, starting

from the current cursor position.

Each element in your list must be separated by either semi-colon or a
comma. A semi-colon prints the data immediately after the previous
value, whereas a comma first moves the cursor to the next TAB position
on the screen.

Normally the cursor will be advanced downwards by a single line after
each PRINT instruction. This can be suppressed by adding a separator
after the print. •

PRINT 10,20*i0,"Hel"5
PRINT "lp"

i

i

• . USING (formatted output)

PRINT USING format*5variable list

The USING statement is used in conjunction with PRINT to provied fine
control over the format of your printed output.

format$ specifies a list of characters which defines the way your
variables will be displayed on the screen. Any normal text in this
string will be printed directly, but if you include one of the
characters '"S+-.;" then one of a range of useful formatting operations
will be performed.

"" Formats a sting variable,. Every "" is replaced by a single character
from your output string, taken from left to right.

PRINT USING "This is a w " ~ - demonstration of USING"; "Small"

8 Each hash character specifies a single digit to be printed out from
your cariable,. Any unused digits in this list will be automatically 255
replaced by spaces.

+ Adds a plus sign to a number if its positive, and a minus minus
sign if it's negative,

PRINT USING "+«tt";10 5 PRINT USING "+«it";-10 ' . -..

- Only includes a sign if the number is negative,, Positive numbers
are preceded by a space,,

Places a decimal point in the number,, and centres it neatly on the
screen„ . ?

; Centres a number but doesn't output a decimal point.

Prints out a number in exponential form,.

\ t
>RIh!T USING "Here is a number A"; 12345.678PR I

REPi / ' (comment)

RE if comment

The REM statements is'used to add comments to your Basic program.. Any

text typed in after a REM statement will be completely ignored by AMlio

Basic.

REM This is a comment
' this is a comment.

So, a quote mark "'" can also be used, but it *must* be placed at the

absolute beginning of the line.

' DATA (place a list of data items 256
•••••-, in a AMOS Basic program)

The DATA statement allows you to incorporate whole lists of useful
information directly inside a Basic program. This data can be
subsequently loaded into one or more variables using the READ :
instruction. Each variable in your list is separated tay a single comma. •

DATA 1,2,3,"Hello"

Unlike most other Basics, the AMOS version of this instruction also
lets you include expression s as part of your data. So the following
lines of code a.re equally acceptable:

DATA $FF50,,$890
DATA miiilillili,,^1101010101
DATA A
Labels Data A+3/2.0-Sin(B)
Data "Hello" •••"There"

It's important to realise that the "A" at LABEL will be input as the
contents of variable A, and not the character A., The expression will be
evaluated automatically during the READ operation using the 3. as test
values of A and B.

Also note that each DATA instruction must be the only statement on
the current 1 in e. An y t h i n g af te r t h i s c.omman d w i 11 be to tally ignored!
Data statements can be placed anywhere in your Basic program. However.,
any data you store inside an AMOS procedure will not be accessible from
t h e m a i n p r o g r a n > „

READ (read some data a DATA
'••';•• ' statement into a variable)

READ list of variables • •;; .

Loads some informatoin stored in a DATA statement into a list of
variables. READ uses a special marker to determine the location of the
next piece of data to be entered. At the start of your program, the
marker is moved to the first item of the first DATA statement. Once
this item has been read, the marker is advanced so that it points to
the next item in your list,, As you might expect, the variables you read

f
must be exactly the same type as the data held at the current position,
El x ample s

T=10
Read A$,B,C,D$ \

, ' Print At,B,C,D* :
Data "String" ,2,T*20+rnd(100),"AMOS !'-i-"3asic:"

RESTORE- (set the current READ pointer)

RESTORE Label
RESTORE LABEL*
RESTORE Line RESTORE changes the point at which a subsequent
RESTORE number READ operation will expect to find the next DATA

statement. Each AMOS procedure has its own
individual data pointer. So any calls to this command wlil only apply
to the ^current* procedure!

"label" is a label which specifies the position of the first DATA
statement to be read. This label name can be calculated as part of an
expression. The f o11o w ing B a s ic c omma nd s a r e pe r f e c 11y 1ega1s

RESTORE I...
RESTORE 1 IL i ! + " A " + " e " + 11E" + " L "

Similarly, line selects the line number of the next DATA statement-
Like "label" it can be entered as an expressions

/.• RESTORE TEST+2

By allowing you to jump at will through the DATA statements in your
program, RESTORE lets you choose your information depending on the
actions of the user,, Each room of an adventure,, for instance, could
have its description stored in a list of simple DATA statements,, To
read this description you could use some thing likes

Restore R00M*5+1.000 :: Rem Each R00I1 has 5 data statements
• Read DESC$ s Print DESC$

Obviously, if a data statement does not exist at the line specified by
RESTORE, and appropriate error message will be generated. Beware of
trying to use this command inside a procedure,, In order to work, your
DATA statements #I1UST# be within the current procedure.

WAIT (wait in SOths of a second) 258

WAIT n

Suspends an AMOS Basic program for n/50 of a second,, Any functions
which use interrupts, such as WOVE and MUSIC, will continue to work as
n o r m a 1 d u r i n g t h i s p e r i o cl,,

=TIHER= (count in SOths of a second)

v=TIMER
TIMER=v

f.
TliiER is a reserved variable which is incremented by 1 every 50th of a
second- It's commonly used to set the seed of the random number
- —
generator like sos

Randomize Timer

NOT (logical NOT operation)

v=N0T(d)

This function changes s'jery binary digit in a number from a 1 to a 0
and vice versa- Since True=-3. (^11.1.1111111111) in binary and F&lse-O,
NOT (True)--False,, Example!:

Print Bin$(Not(?il0105;!4)
(results 0101)

If Not(True)==False Then Print "False"

TRUE (logical TRUE)

v=TRUE ' • ,

Whenever a test is made such as X>1(),, a value is produced. If the
condition is true then this number is set to -1, otherwise it will be
zero.

. '- If -1 Then Print "Minus 1. Is TRUE"
•:._ If TURE Then Print "and TRUE Is ":;TRUE

. c- •• FALSE (logical FALSE) 25?

v^FALSE

Returns a value of zero. This is used by all the conditional operations
such as IF-,, .THEN and REPEAT. . .UNTIL to represent FALSE.

Print FALSE
(result s 0)

